Seite - 59 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 59 -
Text der Seite - 59 -
Cooperet al. Nanoparticles for radiation therapy
andnuclear spectroscopy.Nucl. Instrum.MethodsPhys.Res.A579, 15–18.doi:
10.1016/j.nima.2007.04.004
McKigney, E.A.,Muenchausen, R. E., Cooke,D.W.,Del Sesto, R. E.,Gilbertson,
R.D.,Bacrania,M.K.,etal. (eds.). (2007b).LaF3:Cenanocompositescintillator
forgamma-raydetection.Proc.SPIE6706.doi:10.1117/12.737364
McMahon, S. J.,Mendenhall,M.H., Jain, S., andCurrell, F. (2008).Radiotherapy
in thepresenceof contrast agents: a general figureofmerit and its application
to gold nanoparticles. Phys. Med. Biol. 53, 5635–5651. doi: 10.1088/0031-
9155/53/20/005
Miladi, I., Duc, G. L., Kryza, D., Berniard, A.,Mowat, P., Roux, S., et al. (2013).
Biodistribution of ultra small gadolinium-based nanoparticles as theranos-
tic agent: application to brain tumors. J. Biomater. Appl. 28, 385–394. doi:
10.1177/0885328212454315
Moghimi, S. M., and Farhangrazi, Z. S. (2014). Just so stories: the ran-
dom acts of anti-cancer nanomedicine performance. Nanomedicine. doi:
10.1016/j.nano.2014.04.011. [Epubaheadofprint].
Moretti, F., Patton, G., Belsky, A., Fasoli, M., Vedda, A., Trevisani, M., et al.
(2014). Radioluminescence sensitization in scintillators and phosphors: trap
engineeringandmodeling. J.Phys.Chem.C118,9670–9676.doi: 10.1021/jp50
1717z
Morgan,N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K., andCapala, J.
(2009).Nanoscintillator conjugates as photodynamic therapy-based radiosen-
sitizers: calculationof requiredphysical parameters.Radiat.Res.171, 236–244.
doi:10.1667/RR1470.1
Moses, W. W., and Derenzo, S. E. (1989). Cerium fluoride, a new fast, heavy
scintillator. IEEETrans.Nucl. Sci.36,173–176.doi:10.1109/23.34428
Moses,W.W., andDerenzo, S. E. (1990). The scintillation properties of cerium-
dopedlanthanumfluoride.Nucl. Instrum.MethodsPhys.Res.A299,51–56.doi:
10.1016/0168-9002(90)90746-S
Moses,W.W.,Derenzo, S.E.,Weber,M. J.,Ray-Chaudhuri,A.K., andCerrina, F.
(1994). Scintillationmechanisms inceriumfluoride. J. Lumin.59,89–100.doi:
10.1016/0022-2313(94)90026-4
Ngwa,W.,Makrigiorgos,G.M.,andBerbeco,R. I. (2010).Applyinggoldnanopar-
ticles as tumor-vasculardisruptingagentsduringbrachytherapy: estimationof
endothelial dose enhancement. Phys. Med. Biol. 55:6533. doi: 10.1088/0031-
9155/55/21/013
Nichols, J.W., andBae,Y.H. (2014).EPR: evidenceand fallacy. J.Control.Release
190C,451–464.doi:10.1016/j.jconrel.2014.03.057
Niedre,M. J., Secord,A. J.,Patterson,M.S., andWilson,B.C. (2003). Invitro tests
of thevalidityofsingletoxygenluminescencemeasurementsasadosemetric in
photodynamic therapy.CancerRes.63,7986–7994.
Niedre, M., Patterson, M. S., and Wilson, B. C. (2002). Direct near-infrared
luminescence detection of singlet oxygen generated by photodynamic therapy
in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382–391. doi:
10.1562/0031-8655(2002)0750382DNILDO2.0.CO2
Rahman,W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P.,Wong, C., et al.
(2009). Enhancement of radiation effects by gold nanoparticles for super-
ficial radiation therapy.Nanomedicine 5, 136–142. doi: 10.1016/j.nano.2009.
01.014
Razzak,R.,Zhou, J.,Yang,X.,Pervez,N.,Bedard,E.L.,Moore,R.B., et al. (2013).
The biodistribution and pharmacokinetic evaluation of choline-bound gold
nanoparticles in a human prostate tumor xenograftmodel.Clin. Invest.Med.
36,E133–E142.
Robbins, D. J. (1980). On predicting the maximum efficiency of phosphor sys-
tems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694–2702. doi:
10.1149/1.2129574
Rodnyi, P.,Melchakov, E., Zakharov,N.,Munro, I., andHopkirk, A. (1995). Fast
luminescence of ceriumdoped lanthanumfluoride. J. Lumin. 65, 85–89. doi:
10.1016/0022-2313(95)00055-U
Scaffidi, J. P.,Gregas,M.K., Lauly,B.,Zhang,Y., andVo-Dinh,T. (2011).Activity
of psoralen-functionalized nanoscintillators against cancer cells upon X-ray
excitation.ACSNano5,4679–4687.doi:10.1021/nn200511m
Selvin, P.R. (1996). Lanthanide-based resonance energy transfer. IEEE J. Sel. Top.
QuantumElectron.2,1077–1087.doi:10.1109/2944.577339
Selvin, P. R. (2002). Principles and biophysical applications of lanthanide-
based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302. doi:
10.1146/annurev.biophys.31.101101.140927
Seve, A., Couleaud, P., Lux, F., Tillement, O., Arnoux, P., Andre, J.-C., et al.
(2012). Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen lumines-
cence quenching. Photochem. Photobiol. Sci. 11, 803–811. doi: 10.1039/c2pp0
5324a
Song,C.W.,Shakil,A.,Osborn, J.L., andIwata,K. (2009).Tumouroxygenation is
increasedbyhyperthermiaatmildtemperatures. Int. J.Hyperthermia25,91–95.
doi:10.1080/02656730902744171
Song, K., Xu, P., Meng, Y. D., Geng, F., Li, J., Li, Z., et al. (2013). Smart gold
nanoparticles enhance killing effect on cancer cells. Int. J.Oncol. 42, 597–608.
doi:10.3892/ijo.2012.1721
Starkewolf,Z.B.,Miyachi,L.,Wong, J., andGuo,T. (2013).X-ray triggeredrelease
of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem.
Commun.49,2545–2547.doi:10.1039/c3cc38100e
Su, X. Y., Liu, P. D., Wu, H., and Gu, N. (2014). Enhancement of
radiosensitization by metal-based nanoparticles in cancer radiation ther-
apy. Cancer Biol. Med. 11, 86–91. doi: 10.7497/j.issn.2095-3941.2014.
02.003
vanDam,G.M.,Themelis,G.,Crane,L.M.,Harlaar,N. J.,Pleijhuis,R.G.,Kelder,
W., etal. (2011). Intraoperative tumor-specificfluorescence imaging inovarian
cancer by folate receptor-alpha targeting: first in-human results.Nat.Med.17,
1315–1319.doi:10.1038/nm.2472
VandenHeuvel, F., Locquet, J. P., andNuyts, S. (2010). Beam energy considera-
tions forgoldnano-particle enhancedradiation treatment.Phys.Med.Biol.55,
4509–4520.doi:10.1088/0031-9155/55/16/S06
van der Zee, J., González, D., van Rhoon, G. C., van Dijk, J. D. P., van Putten,
W. L. J., andHart, A. A.M. (2000). Comparison of radiotherapy alone with
radiotherapyplushyperthermia in locallyadvancedpelvic tumours: aprospec-
tive, randomised,multicentre trial.Lancet355,1119–1125.doi:10.1016/S0140-
6736(00)02059-6
Verma, J., Lal, S., and Van Noorden, C. J. (2014). Nanoparticles for hyper-
thermic therapy: synthesis strategies and applications in glioblastoma. Int. J.
Nanomedicine9,2863–2877.doi:10.2147/IJN.S57501
Vernon, C. C., Hand, J. W., Field, S. B., Machin, D., Whaley, J. B., van der
Zee, J., et al. (1996). Radiotherapy with or without hyperthermia in the
treatment of superficial localized breast cancer: results fromfive randomized
controlledtrials.Int.J.Radiat.Oncol.Biol.Phys.35,731–744.doi:10.1016/0360-
3016(96)00154-X
Vistovskyy, V.,Malyy, T., Pushak, A., Vas’kiv, A., Shapoval, A.,Mitina, N., et al.
(2014). Luminescence and scintillationproperties of LuPO4-Cenanoparticles.
J.Lumin.145,232–236.doi:10.1016/j.jlumin.2013.07.027
Withers,N. J., Sankar,K.,Akins,B.A.,Memon,T.A.,Gu,T.,Gu, J., et al. (2008).
Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma
irradiation.Appl.Phys.Lett.93,173101.doi:10.1063/1.2978073
Wojtowicz, A. J., Balcerzyk, M., Berman, E., and Lempicki, A. (1994). Optical
spectroscopy and scintillation mechanisms of CexLa1-xF3. Phys. Rev. B 49,
14880–14895.doi:10.1103/PhysRevB.49.14880
Wojtowicz,A. J.,Berman,E.,Koepke,C., andLempicki,A. (1992). Stoichiometric
ceriumcompoundsas scintillators. I.CeF3. IEEETrans.Nucl. Sci.39, 494–501.
doi:10.1109/23.159654
Wuister,S.F.,deMelloDonega,C.,andMeijerink,A.(2004).Efficientenergytrans-
fer between nanocrystalline YAG:Ce and TRITC. Phys. Chem. Chem. Phys. 6,
1633–1636.doi:10.1039/b401299b
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H.,
et al. (2002).Hyperthermia in combined treatment of cancer.LancetOncol.3,
487–497.doi:10.1016/S1470-2045(02)00818-5
Xu,W. C., Luo, T., Li, P., Zhou, C.Q., Cui, D. X., Pang, B., et al. (2012). RGD-
conjugated gold nanorods induce radiosensitization inmelanoma cancer cells
bydownregulatingalpha(v)beta(3)expression. Int. J.Nanomedicine7,915–924.
doi:10.2147/IJN.S28314
Yao, L., Daniels, J., Moshnikova, A., Kuznetsov, S., Ahmed, A., Engelman,
D. M., et al. (2013). pHLIP peptide targets nanogold particles to tumors.
Proc. Natl. Acad. Sci. U.S.A. 110, 465–470. doi: 10.1073/pnas.12196
65110
Zagar, T. M., Oleson, J. R., Vujaskovic, Z., Dewhirst, M. W., Craciunescu,
O. I., Blackwell, K. L., et al. (2010). Hyperthermia combined with radi-
ation therapy for superficial breast cancer and chest wall recurrence: a
review of the randomised data. Int. J. Hyperthermia 26, 612–617. doi:
10.3109/02656736.2010.487194
Zhang, X.-D., Chen, J., Min, Y., Park, G. B., Shen, X., Song, S.-S., et al.
(2014).MetabolizableBi2Se3nanoplates:biodistribution, toxicity, anduses for
Frontiers inChemistry | ChemicalEngineering October2014 |Volume2 |Article86 | 59
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie