Page - 59 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 59 -
Text of the Page - 59 -
Cooperet al. Nanoparticles for radiation therapy
andnuclear spectroscopy.Nucl. Instrum.MethodsPhys.Res.A579, 15β18.doi:
10.1016/j.nima.2007.04.004
McKigney, E.A.,Muenchausen, R. E., Cooke,D.W.,Del Sesto, R. E.,Gilbertson,
R.D.,Bacrania,M.K.,etal. (eds.). (2007b).LaF3:Cenanocompositescintillator
forgamma-raydetection.Proc.SPIE6706.doi:10.1117/12.737364
McMahon, S. J.,Mendenhall,M.H., Jain, S., andCurrell, F. (2008).Radiotherapy
in thepresenceof contrast agents: a general figureofmerit and its application
to gold nanoparticles. Phys. Med. Biol. 53, 5635β5651. doi: 10.1088/0031-
9155/53/20/005
Miladi, I., Duc, G. L., Kryza, D., Berniard, A.,Mowat, P., Roux, S., et al. (2013).
Biodistribution of ultra small gadolinium-based nanoparticles as theranos-
tic agent: application to brain tumors. J. Biomater. Appl. 28, 385β394. doi:
10.1177/0885328212454315
Moghimi, S. M., and Farhangrazi, Z. S. (2014). Just so stories: the ran-
dom acts of anti-cancer nanomedicine performance. Nanomedicine. doi:
10.1016/j.nano.2014.04.011. [Epubaheadofprint].
Moretti, F., Patton, G., Belsky, A., Fasoli, M., Vedda, A., Trevisani, M., et al.
(2014). Radioluminescence sensitization in scintillators and phosphors: trap
engineeringandmodeling. J.Phys.Chem.C118,9670β9676.doi: 10.1021/jp50
1717z
Morgan,N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K., andCapala, J.
(2009).Nanoscintillator conjugates as photodynamic therapy-based radiosen-
sitizers: calculationof requiredphysical parameters.Radiat.Res.171, 236β244.
doi:10.1667/RR1470.1
Moses, W. W., and Derenzo, S. E. (1989). Cerium fluoride, a new fast, heavy
scintillator. IEEETrans.Nucl. Sci.36,173β176.doi:10.1109/23.34428
Moses,W.W., andDerenzo, S. E. (1990). The scintillation properties of cerium-
dopedlanthanumfluoride.Nucl. Instrum.MethodsPhys.Res.A299,51β56.doi:
10.1016/0168-9002(90)90746-S
Moses,W.W.,Derenzo, S.E.,Weber,M. J.,Ray-Chaudhuri,A.K., andCerrina, F.
(1994). Scintillationmechanisms inceriumfluoride. J. Lumin.59,89β100.doi:
10.1016/0022-2313(94)90026-4
Ngwa,W.,Makrigiorgos,G.M.,andBerbeco,R. I. (2010).Applyinggoldnanopar-
ticles as tumor-vasculardisruptingagentsduringbrachytherapy: estimationof
endothelial dose enhancement. Phys. Med. Biol. 55:6533. doi: 10.1088/0031-
9155/55/21/013
Nichols, J.W., andBae,Y.H. (2014).EPR: evidenceand fallacy. J.Control.Release
190C,451β464.doi:10.1016/j.jconrel.2014.03.057
Niedre,M. J., Secord,A. J.,Patterson,M.S., andWilson,B.C. (2003). Invitro tests
of thevalidityofsingletoxygenluminescencemeasurementsasadosemetric in
photodynamic therapy.CancerRes.63,7986β7994.
Niedre, M., Patterson, M. S., and Wilson, B. C. (2002). Direct near-infrared
luminescence detection of singlet oxygen generated by photodynamic therapy
in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382β391. doi:
10.1562/0031-8655(2002)0750382DNILDO2.0.CO2
Rahman,W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P.,Wong, C., et al.
(2009). Enhancement of radiation effects by gold nanoparticles for super-
ficial radiation therapy.Nanomedicine 5, 136β142. doi: 10.1016/j.nano.2009.
01.014
Razzak,R.,Zhou, J.,Yang,X.,Pervez,N.,Bedard,E.L.,Moore,R.B., et al. (2013).
The biodistribution and pharmacokinetic evaluation of choline-bound gold
nanoparticles in a human prostate tumor xenograftmodel.Clin. Invest.Med.
36,E133βE142.
Robbins, D. J. (1980). On predicting the maximum efficiency of phosphor sys-
tems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694β2702. doi:
10.1149/1.2129574
Rodnyi, P.,Melchakov, E., Zakharov,N.,Munro, I., andHopkirk, A. (1995). Fast
luminescence of ceriumdoped lanthanumfluoride. J. Lumin. 65, 85β89. doi:
10.1016/0022-2313(95)00055-U
Scaffidi, J. P.,Gregas,M.K., Lauly,B.,Zhang,Y., andVo-Dinh,T. (2011).Activity
of psoralen-functionalized nanoscintillators against cancer cells upon X-ray
excitation.ACSNano5,4679β4687.doi:10.1021/nn200511m
Selvin, P.R. (1996). Lanthanide-based resonance energy transfer. IEEE J. Sel. Top.
QuantumElectron.2,1077β1087.doi:10.1109/2944.577339
Selvin, P. R. (2002). Principles and biophysical applications of lanthanide-
based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275β302. doi:
10.1146/annurev.biophys.31.101101.140927
Seve, A., Couleaud, P., Lux, F., Tillement, O., Arnoux, P., Andre, J.-C., et al.
(2012). Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen lumines-
cence quenching. Photochem. Photobiol. Sci. 11, 803β811. doi: 10.1039/c2pp0
5324a
Song,C.W.,Shakil,A.,Osborn, J.L., andIwata,K. (2009).Tumouroxygenation is
increasedbyhyperthermiaatmildtemperatures. Int. J.Hyperthermia25,91β95.
doi:10.1080/02656730902744171
Song, K., Xu, P., Meng, Y. D., Geng, F., Li, J., Li, Z., et al. (2013). Smart gold
nanoparticles enhance killing effect on cancer cells. Int. J.Oncol. 42, 597β608.
doi:10.3892/ijo.2012.1721
Starkewolf,Z.B.,Miyachi,L.,Wong, J., andGuo,T. (2013).X-ray triggeredrelease
of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem.
Commun.49,2545β2547.doi:10.1039/c3cc38100e
Su, X. Y., Liu, P. D., Wu, H., and Gu, N. (2014). Enhancement of
radiosensitization by metal-based nanoparticles in cancer radiation ther-
apy. Cancer Biol. Med. 11, 86β91. doi: 10.7497/j.issn.2095-3941.2014.
02.003
vanDam,G.M.,Themelis,G.,Crane,L.M.,Harlaar,N. J.,Pleijhuis,R.G.,Kelder,
W., etal. (2011). Intraoperative tumor-specificfluorescence imaging inovarian
cancer by folate receptor-alpha targeting: first in-human results.Nat.Med.17,
1315β1319.doi:10.1038/nm.2472
VandenHeuvel, F., Locquet, J. P., andNuyts, S. (2010). Beam energy considera-
tions forgoldnano-particle enhancedradiation treatment.Phys.Med.Biol.55,
4509β4520.doi:10.1088/0031-9155/55/16/S06
van der Zee, J., GonzΓ‘lez, D., van Rhoon, G. C., van Dijk, J. D. P., van Putten,
W. L. J., andHart, A. A.M. (2000). Comparison of radiotherapy alone with
radiotherapyplushyperthermia in locallyadvancedpelvic tumours: aprospec-
tive, randomised,multicentre trial.Lancet355,1119β1125.doi:10.1016/S0140-
6736(00)02059-6
Verma, J., Lal, S., and Van Noorden, C. J. (2014). Nanoparticles for hyper-
thermic therapy: synthesis strategies and applications in glioblastoma. Int. J.
Nanomedicine9,2863β2877.doi:10.2147/IJN.S57501
Vernon, C. C., Hand, J. W., Field, S. B., Machin, D., Whaley, J. B., van der
Zee, J., et al. (1996). Radiotherapy with or without hyperthermia in the
treatment of superficial localized breast cancer: results fromfive randomized
controlledtrials.Int.J.Radiat.Oncol.Biol.Phys.35,731β744.doi:10.1016/0360-
3016(96)00154-X
Vistovskyy, V.,Malyy, T., Pushak, A., Vasβkiv, A., Shapoval, A.,Mitina, N., et al.
(2014). Luminescence and scintillationproperties of LuPO4-Cenanoparticles.
J.Lumin.145,232β236.doi:10.1016/j.jlumin.2013.07.027
Withers,N. J., Sankar,K.,Akins,B.A.,Memon,T.A.,Gu,T.,Gu, J., et al. (2008).
Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma
irradiation.Appl.Phys.Lett.93,173101.doi:10.1063/1.2978073
Wojtowicz, A. J., Balcerzyk, M., Berman, E., and Lempicki, A. (1994). Optical
spectroscopy and scintillation mechanisms of CexLa1-xF3. Phys. Rev. B 49,
14880β14895.doi:10.1103/PhysRevB.49.14880
Wojtowicz,A. J.,Berman,E.,Koepke,C., andLempicki,A. (1992). Stoichiometric
ceriumcompoundsas scintillators. I.CeF3. IEEETrans.Nucl. Sci.39, 494β501.
doi:10.1109/23.159654
Wuister,S.F.,deMelloDonega,C.,andMeijerink,A.(2004).Efficientenergytrans-
fer between nanocrystalline YAG:Ce and TRITC. Phys. Chem. Chem. Phys. 6,
1633β1636.doi:10.1039/b401299b
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H.,
et al. (2002).Hyperthermia in combined treatment of cancer.LancetOncol.3,
487β497.doi:10.1016/S1470-2045(02)00818-5
Xu,W. C., Luo, T., Li, P., Zhou, C.Q., Cui, D. X., Pang, B., et al. (2012). RGD-
conjugated gold nanorods induce radiosensitization inmelanoma cancer cells
bydownregulatingalpha(v)beta(3)expression. Int. J.Nanomedicine7,915β924.
doi:10.2147/IJN.S28314
Yao, L., Daniels, J., Moshnikova, A., Kuznetsov, S., Ahmed, A., Engelman,
D. M., et al. (2013). pHLIP peptide targets nanogold particles to tumors.
Proc. Natl. Acad. Sci. U.S.A. 110, 465β470. doi: 10.1073/pnas.12196
65110
Zagar, T. M., Oleson, J. R., Vujaskovic, Z., Dewhirst, M. W., Craciunescu,
O. I., Blackwell, K. L., et al. (2010). Hyperthermia combined with radi-
ation therapy for superficial breast cancer and chest wall recurrence: a
review of the randomised data. Int. J. Hyperthermia 26, 612β617. doi:
10.3109/02656736.2010.487194
Zhang, X.-D., Chen, J., Min, Y., Park, G. B., Shen, X., Song, S.-S., et al.
(2014).MetabolizableBi2Se3nanoplates:biodistribution, toxicity, anduses for
Frontiers inChemistry | ChemicalEngineering October2014 |Volume2 |Article86 | 59
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoΓ£o Conde
- Pedro Viana Baptista
- JesΓΊs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie