Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Page - 59 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 59 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Image of the Page - 59 -

Image of the Page - 59 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text of the Page - 59 -

Cooperet al. Nanoparticles for radiation therapy andnuclear spectroscopy.Nucl. Instrum.MethodsPhys.Res.A579, 15–18.doi: 10.1016/j.nima.2007.04.004 McKigney, E.A.,Muenchausen, R. E., Cooke,D.W.,Del Sesto, R. E.,Gilbertson, R.D.,Bacrania,M.K.,etal. (eds.). (2007b).LaF3:Cenanocompositescintillator forgamma-raydetection.Proc.SPIE6706.doi:10.1117/12.737364 McMahon, S. J.,Mendenhall,M.H., Jain, S., andCurrell, F. (2008).Radiotherapy in thepresenceof contrast agents: a general figureofmerit and its application to gold nanoparticles. Phys. Med. Biol. 53, 5635–5651. doi: 10.1088/0031- 9155/53/20/005 Miladi, I., Duc, G. L., Kryza, D., Berniard, A.,Mowat, P., Roux, S., et al. (2013). Biodistribution of ultra small gadolinium-based nanoparticles as theranos- tic agent: application to brain tumors. J. Biomater. Appl. 28, 385–394. doi: 10.1177/0885328212454315 Moghimi, S. M., and Farhangrazi, Z. S. (2014). Just so stories: the ran- dom acts of anti-cancer nanomedicine performance. Nanomedicine. doi: 10.1016/j.nano.2014.04.011. [Epubaheadofprint]. Moretti, F., Patton, G., Belsky, A., Fasoli, M., Vedda, A., Trevisani, M., et al. (2014). Radioluminescence sensitization in scintillators and phosphors: trap engineeringandmodeling. J.Phys.Chem.C118,9670–9676.doi: 10.1021/jp50 1717z Morgan,N. Y., Kramer-Marek, G., Smith, P. D., Camphausen, K., andCapala, J. (2009).Nanoscintillator conjugates as photodynamic therapy-based radiosen- sitizers: calculationof requiredphysical parameters.Radiat.Res.171, 236–244. doi:10.1667/RR1470.1 Moses, W. W., and Derenzo, S. E. (1989). Cerium fluoride, a new fast, heavy scintillator. IEEETrans.Nucl. Sci.36,173–176.doi:10.1109/23.34428 Moses,W.W., andDerenzo, S. E. (1990). The scintillation properties of cerium- dopedlanthanumfluoride.Nucl. Instrum.MethodsPhys.Res.A299,51–56.doi: 10.1016/0168-9002(90)90746-S Moses,W.W.,Derenzo, S.E.,Weber,M. J.,Ray-Chaudhuri,A.K., andCerrina, F. (1994). Scintillationmechanisms inceriumfluoride. J. Lumin.59,89–100.doi: 10.1016/0022-2313(94)90026-4 Ngwa,W.,Makrigiorgos,G.M.,andBerbeco,R. I. (2010).Applyinggoldnanopar- ticles as tumor-vasculardisruptingagentsduringbrachytherapy: estimationof endothelial dose enhancement. Phys. Med. Biol. 55:6533. doi: 10.1088/0031- 9155/55/21/013 Nichols, J.W., andBae,Y.H. (2014).EPR: evidenceand fallacy. J.Control.Release 190C,451–464.doi:10.1016/j.jconrel.2014.03.057 Niedre,M. J., Secord,A. J.,Patterson,M.S., andWilson,B.C. (2003). Invitro tests of thevalidityofsingletoxygenluminescencemeasurementsasadosemetric in photodynamic therapy.CancerRes.63,7986–7994. Niedre, M., Patterson, M. S., and Wilson, B. C. (2002). Direct near-infrared luminescence detection of singlet oxygen generated by photodynamic therapy in cells in vitro and tissues in vivo. Photochem. Photobiol. 75, 382–391. doi: 10.1562/0031-8655(2002)0750382DNILDO2.0.CO2 Rahman,W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P.,Wong, C., et al. (2009). Enhancement of radiation effects by gold nanoparticles for super- ficial radiation therapy.Nanomedicine 5, 136–142. doi: 10.1016/j.nano.2009. 01.014 Razzak,R.,Zhou, J.,Yang,X.,Pervez,N.,Bedard,E.L.,Moore,R.B., et al. (2013). The biodistribution and pharmacokinetic evaluation of choline-bound gold nanoparticles in a human prostate tumor xenograftmodel.Clin. Invest.Med. 36,E133–E142. Robbins, D. J. (1980). On predicting the maximum efficiency of phosphor sys- tems excited by ionizing radiation. J. Electrochem. Soc. 127, 2694–2702. doi: 10.1149/1.2129574 Rodnyi, P.,Melchakov, E., Zakharov,N.,Munro, I., andHopkirk, A. (1995). Fast luminescence of ceriumdoped lanthanumfluoride. J. Lumin. 65, 85–89. doi: 10.1016/0022-2313(95)00055-U Scaffidi, J. P.,Gregas,M.K., Lauly,B.,Zhang,Y., andVo-Dinh,T. (2011).Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation.ACSNano5,4679–4687.doi:10.1021/nn200511m Selvin, P.R. (1996). Lanthanide-based resonance energy transfer. IEEE J. Sel. Top. QuantumElectron.2,1077–1087.doi:10.1109/2944.577339 Selvin, P. R. (2002). Principles and biophysical applications of lanthanide- based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302. doi: 10.1146/annurev.biophys.31.101101.140927 Seve, A., Couleaud, P., Lux, F., Tillement, O., Arnoux, P., Andre, J.-C., et al. (2012). Long-distance energy transfer photosensitizers arising in hybrid nanoparticles leading to fluorescence emission and singlet oxygen lumines- cence quenching. Photochem. Photobiol. Sci. 11, 803–811. doi: 10.1039/c2pp0 5324a Song,C.W.,Shakil,A.,Osborn, J.L., andIwata,K. (2009).Tumouroxygenation is increasedbyhyperthermiaatmildtemperatures. Int. J.Hyperthermia25,91–95. doi:10.1080/02656730902744171 Song, K., Xu, P., Meng, Y. D., Geng, F., Li, J., Li, Z., et al. (2013). Smart gold nanoparticles enhance killing effect on cancer cells. Int. J.Oncol. 42, 597–608. doi:10.3892/ijo.2012.1721 Starkewolf,Z.B.,Miyachi,L.,Wong, J., andGuo,T. (2013).X-ray triggeredrelease of doxorubicin from nanoparticle drug carriers for cancer therapy. Chem. Commun.49,2545–2547.doi:10.1039/c3cc38100e Su, X. Y., Liu, P. D., Wu, H., and Gu, N. (2014). Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation ther- apy. Cancer Biol. Med. 11, 86–91. doi: 10.7497/j.issn.2095-3941.2014. 02.003 vanDam,G.M.,Themelis,G.,Crane,L.M.,Harlaar,N. J.,Pleijhuis,R.G.,Kelder, W., etal. (2011). Intraoperative tumor-specificfluorescence imaging inovarian cancer by folate receptor-alpha targeting: first in-human results.Nat.Med.17, 1315–1319.doi:10.1038/nm.2472 VandenHeuvel, F., Locquet, J. P., andNuyts, S. (2010). Beam energy considera- tions forgoldnano-particle enhancedradiation treatment.Phys.Med.Biol.55, 4509–4520.doi:10.1088/0031-9155/55/16/S06 van der Zee, J., GonzΓ‘lez, D., van Rhoon, G. C., van Dijk, J. D. P., van Putten, W. L. J., andHart, A. A.M. (2000). Comparison of radiotherapy alone with radiotherapyplushyperthermia in locallyadvancedpelvic tumours: aprospec- tive, randomised,multicentre trial.Lancet355,1119–1125.doi:10.1016/S0140- 6736(00)02059-6 Verma, J., Lal, S., and Van Noorden, C. J. (2014). Nanoparticles for hyper- thermic therapy: synthesis strategies and applications in glioblastoma. Int. J. Nanomedicine9,2863–2877.doi:10.2147/IJN.S57501 Vernon, C. C., Hand, J. W., Field, S. B., Machin, D., Whaley, J. B., van der Zee, J., et al. (1996). Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: results fromfive randomized controlledtrials.Int.J.Radiat.Oncol.Biol.Phys.35,731–744.doi:10.1016/0360- 3016(96)00154-X Vistovskyy, V.,Malyy, T., Pushak, A., Vas’kiv, A., Shapoval, A.,Mitina, N., et al. (2014). Luminescence and scintillationproperties of LuPO4-Cenanoparticles. J.Lumin.145,232–236.doi:10.1016/j.jlumin.2013.07.027 Withers,N. J., Sankar,K.,Akins,B.A.,Memon,T.A.,Gu,T.,Gu, J., et al. (2008). Rapid degradation of CdSe/ZnS colloidal quantum dots exposed to gamma irradiation.Appl.Phys.Lett.93,173101.doi:10.1063/1.2978073 Wojtowicz, A. J., Balcerzyk, M., Berman, E., and Lempicki, A. (1994). Optical spectroscopy and scintillation mechanisms of CexLa1-xF3. Phys. Rev. B 49, 14880–14895.doi:10.1103/PhysRevB.49.14880 Wojtowicz,A. J.,Berman,E.,Koepke,C., andLempicki,A. (1992). Stoichiometric ceriumcompoundsas scintillators. I.CeF3. IEEETrans.Nucl. Sci.39, 494–501. doi:10.1109/23.159654 Wuister,S.F.,deMelloDonega,C.,andMeijerink,A.(2004).Efficientenergytrans- fer between nanocrystalline YAG:Ce and TRITC. Phys. Chem. Chem. Phys. 6, 1633–1636.doi:10.1039/b401299b Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., et al. (2002).Hyperthermia in combined treatment of cancer.LancetOncol.3, 487–497.doi:10.1016/S1470-2045(02)00818-5 Xu,W. C., Luo, T., Li, P., Zhou, C.Q., Cui, D. X., Pang, B., et al. (2012). RGD- conjugated gold nanorods induce radiosensitization inmelanoma cancer cells bydownregulatingalpha(v)beta(3)expression. Int. J.Nanomedicine7,915–924. doi:10.2147/IJN.S28314 Yao, L., Daniels, J., Moshnikova, A., Kuznetsov, S., Ahmed, A., Engelman, D. M., et al. (2013). pHLIP peptide targets nanogold particles to tumors. Proc. Natl. Acad. Sci. U.S.A. 110, 465–470. doi: 10.1073/pnas.12196 65110 Zagar, T. M., Oleson, J. R., Vujaskovic, Z., Dewhirst, M. W., Craciunescu, O. I., Blackwell, K. L., et al. (2010). Hyperthermia combined with radi- ation therapy for superficial breast cancer and chest wall recurrence: a review of the randomised data. Int. J. Hyperthermia 26, 612–617. doi: 10.3109/02656736.2010.487194 Zhang, X.-D., Chen, J., Min, Y., Park, G. B., Shen, X., Song, S.-S., et al. (2014).MetabolizableBi2Se3nanoplates:biodistribution, toxicity, anduses for Frontiers inChemistry | ChemicalEngineering October2014 |Volume2 |Article86 | 59
back to the  book Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Title
Cancer Nanotheranostics
Subtitle
What Have We Learnd So Far?
Authors
JoΓ£o Conde
Pedro Viana Baptista
JesΓΊs M. De La Fuente
Furong Tian
Editor
Frontiers in Chemistry
Date
2016
Language
English
License
CC BY 4.0
ISBN
978-2-88919-776-7
Size
21.0 x 27.7 cm
Pages
132
Keywords
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics