Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 89 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 89 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 89 -

Bild der Seite - 89 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 89 -

Conniotet al. Nanocarriers for immunecell targetingand tracking Helmy, K. Y., Patel, S. A., Nahas, G. R., and Rameshwar, P. (2013). Cancer immunotherapy: accomplishments to date and future promise.Ther. Deliv. 4, 1307–1320.doi:10.4155/tde.13.88 Henderson,R.A.,Mossman,S.,Nairn,N., andCheever,M.A. (2005).Cancervac- cinesandimmunotherapies:emergingperspectives.Vaccine23,2359–2362.doi: 10.1016/j.vaccine.2005.01.082 Herwig,M.C.,Bergstrom,C.,Wells,J.R.,Holler,T.,andGrossniklaus,H.E.(2013). M2/M1ratiooftumorassociatedmacrophagesandPPAR-gammaexpressionin uvealmelanomaswith class 1 andclass 2molecularprofiles.Exp.EyeRes.107, 52–58.doi:10.1016/j.exer.2012.11.012 Higgins, J. P., Bernstein, M. B., and Hodge, J. W. (2009). Enhancing immune responses to tumor-associated antigens.Cancer Biol. Ther. 8, 1440–1449. doi: 10.4161/cbt.8.15.9133 Hildner,K.,Edelson,B.T.,Purtha,W.E.,Diamond,M.,Matsushita,H.,Kohyama, M.,etal. (2008).Batf3deficiencyrevealsacriticalroleforCD8alpha+dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100. doi: 10.1126/sci- ence.1164206 Hillaireau,H., andCouvreur,P. (2009).Nanocarriers’ entry into thecell: relevance to drug delivery.Cell. Mol. Life Sci. 66, 2873–2896. doi: 10.1007/s00018-009- 0053-z Hinrichs,C. S.,Borman,Z.A.,Gattinoni, L.,Yu,Z.,Burns,W.R.,Huang, J., et al. (2011). Human effector CD8+T cells derived fromnaive rather thanmem- ory subsets possess superior traits for adoptive immunotherapy. Blood 117, 808–814.doi:10.1182/blood-2010-05-286286 Hong, H., Yang, K., Zhang, Y., Engle, J. W., Feng, L., Yang, Y., et al. (2012). In vivo targeting and imaging of tumor vasculaturewith radiolabeled, antibody- conjugatednanographene.ACSNano6,2361–2370.doi:10.1021/nn204625e Hughes,M.S.,Marsh,J.N.,Zhang,H.,Woodson,A.K.,Allen,J.S.,Lacy,E.K.,etal. (2006). Characterization of digital waveforms using thermodynamic analogs: detection of contrast-targeted tissue in vivo. IEEETrans. Ultrason. Ferroelectr. Freq.Control53,1609–1616.doi:10.1109/TUFFC.2006.1678189 Hurwitz,A.A., Foster, B.A.,Kwon, E.D., Truong,T.,Choi, E.M.,Greenberg,N. M., etal. (2000).Combination immunotherapyofprimaryprostatecancer ina transgenicmousemodelusingCTLA-4blockade.CancerRes.60,2444–2448. Huwyler, J.,Drewe, J.,andKrahenbuhl,S. (2008).Tumortargetingusingliposomal antineoplasticdrugs. Int. J.Nanomedicine3,21–29.doi:10.2147/IJN.S1253 Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki,M., Kosuge, T., Kanai, Y., et al. (2013). Immunecell infiltration as an indicatorof the immunemicroenviron- mentofpancreaticcancer.Br. J.Cancer108,914–923.doi:10.1038/bjc.2013.32 Ivkov, R., Denardo, S. J., Daum,W., Foreman, A. R., Goldstein, R. C., Nemkov, V. S., et al. (2005). Application of high amplitude alternatingmagnetic fields for heat induction of nanoparticles localized in cancer.Clin. Cancer Res. 11, 7093s–7103s.doi:10.1158/1078-0432.CCR-1004-0016 Iyer, A. K., Khaled, G., Fang, J., andMaeda,H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting.DrugDiscov. Today 11, 812–818.doi:10.1016/j.drudis.2006.07.005 Jain, T. K., Foy, S. P., Erokwu, B., Dimitrijevic, S., Flask, C. A., and Labhasetwar, V. (2009).Magnetic resonance imaging ofmultifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearingmice.Biomaterials 30, 6748–6756. doi:10.1016/j.biomaterials.2009.08.042 Jang, B., Park, S., Kang, S. H., Kim, J. K., Kim, S. K., Kim, I. H., et al. (2012). Gold nanorods for target selective SPECT/CT imaging and photothermal therapy in vivo.Quant. ImagingMed. Surg. 2, 1–11. doi: 10.3978/.issn.2223- 4292.2012.01.03 Janjic, J.M.,andAhrens,E.T.(2009).Fluorine-containingnanoemulsionsforMRI cell tracking.Wiley Interdiscip.Rev.Nanomed.Nanobiotechnol.1,492–501.doi: 10.1002/wnan.35 Jarrett, B. R., Gustafsson, B., Kukis, D. L., and Louie, A. Y. (2008). Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug. Chem.19,1496–1504.doi:10.1021/bc800108v Jhaveri, A. M., and Torchilin, V. P. (2014). Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol. 5:77. doi: 10.3389/fphar.2014.00077 Johansen, P., Estevez, F., Zurbriggen, R., Merkle, H. P., Gluck, R., Corradin, G., et al. (2000).Towardsclinical testingofa single-administration tetanusvaccine basedonPLA/PLGAmicrospheres.Vaccine19,1047–1054.doi:10.1016/S0264- 410X(00)00343-1 Joshi, P. P., Yoon, S. J., Chen, Y. S., Emelianov, S., and Sokolov, K. V. (2013). Development and optimization of near-IR contrast agents for immune cell tracking. Biomed. Opt. Express 4, 2609–2618. doi: 10.1364/BOE.4. 002609 Kaida, S., Cabral, H., Kumagai,M., Kishimura, A., Terada, Y., Sekino,M., et al. (2010). Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumormodel. Cancer Res.70,7031–7041.doi:10.1158/0008-5472.CAN-10-0303 Kazzaz, J., Singh,M.,Ugozzoli,M., Chesko, J., Soenawan, E., andO’Hagan,D.T. (2006). Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J. Control. Release 110, 566–573. doi: 10.1016/j.jconrel.2005.10.010 Keller, S.,Wilson, J. T., Patilea, G. I., Kern,H. B., Convertine, A. J., and Stayton, P. S. (2014).Neutral polymermicelle carrierswith pH-responsive, endosome- releasingactivitymodulateantigentraffickingtoenhanceCD8Tcell responses. J.Control.Release191,24–33.doi:10.1016/j.jconrel.2014.03.041 Kenny,G.D.,Kamaly,N.,Kalber,T.L.,Brody,L.P., Sahuri,M.,Shamsaei,E., et al. (2011). Novelmultifunctional nanoparticlemediates siRNA tumour delivery, visualisationand therapeutic tumour reduction in vivo. J.Control.Release149, 111–116.doi:10.1016/j.jconrel.2010.09.020 Khan, D. R., Rezler, E. M., Lauer-Fields, J., and Fields, G. B. (2008). Effects of drughydrophobicityon liposomal stability.Chem.Biol.DrugDes.71,3–7.doi: 10.1111/j.1747-0285.2007.00610.x Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., and Seeberger, P.H. (2009). Invitro imagingand in vivo liver targetingwithcarbohydrate cappedquantum dots. J.Am.Chem.Soc.131,2110–2112.doi:10.1021/ja807711w Kim,J.,Kim,H.S.,Lee,N.,Kim,T.,Kim,H.,Yu,T., etal. (2008a).Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed Engl. 47, 8438–8441. doi: 10.1002/anie.200802469 Kim,J.,Lee, J.E.,Lee,S.H.,Yu,J.H.,Lee, J.H.,Park,T.G.,etal. (2008b).Designed fabricationof amultifunctionalpolymernanomedicalplatformfor simultane- ouscancer-targetedimagingandmagneticallyguideddrugdelivery.Adv.Mater. 20,478.doi:10.1002/adma.200701726 Kim, S., Lim, Y. T., Soltesz, E. G., DeGrand, A.M., Lee, J., Nakayama, A., et al. (2004).Near-infraredfluorescenttypeIIquantumdotsforsentinel lymphnode mapping.Nat.Biotechnol.22,93–97.doi:10.1038/nbt920 Kim, S.W., Zimmer, J. P., Ohnishi, S., Tracy, J. B., Frangioni, J. V., andBawendi, M. G. (2005). Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantumdots for thenear-infrared. J. Am.Chem. Soc.127, 10526–10532. doi: 10.1021/ja0434331 Kim,T.H., Jin,H.,Kim,H.W.,Cho,M.H., andCho,C.S. (2006).Mannosylated chitosannanoparticle-basedcytokinegenetherapysuppressedcancergrowthin BALB/cmice bearingCT-26 carcinoma cells.Mol.Cancer Ther. 5, 1723–1732. doi:10.1158/1535-7163.MCT-05-0540 Kindt,T. J.,Goldsby,R.A.,Osborne,B.A., andKuby, J. (2006).KubyImmunology. NewYork,NY;Basingstoke:W.H.Freeman. Kircher, M. F., Allport, J. R., Graves, E. E., Love, V., Josephson, L., Lichtman, A. H., et al. (2003). In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors.Cancer Res. 63, 6838–6846. Kircher, M. F., Gambhir, S. S., and Grimm, J. (2011). Noninvasive cell-tracking methods.Nat.Rev.Clin.Oncol.8,677–688.doi:10.1038/nrclinonc.2011.141 Kirkwood, J. M., Butterfield, L. H., Tarhini, A. A., Zarour, H., Kalinski, P., and Ferrone, S. (2012). Immunotherapy of cancer in 2012.CACancer J. Clin. 62, 309–335.doi:10.3322/caac.20132 Koebel, C.M., Vermi,W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature450,903–907.doi:10.1038/nature06309 Kopelman,R.,Koo,Y.E.L.,Philbert,M.,Moffat,B.A.,Reddy,G.R.,McConville,P., et al. (2005).Multifunctionalnanoparticleplatforms for in vivoMRIenhance- ment andphotodynamic therapy of a rat brain cancer. J.Magn.Magn.Mater. 293,404–410.doi:10.1016/j.jmmm.2005.02.061 Krishnamachari, Y., Geary, S. M., Lemke, C. D., and Salem, A. K. (2011). Nanoparticledelivery systems incancervaccines.Pharm.Res.28,215–236.doi: 10.1007/s11095-010-0241-4 Krug, L. M., Ragupathi, G., Hood, C., Kris, M. G., Miller, V. A., Allen, J. R., et al. (2004).Vaccinationofpatientswith small-cell lungcancerwith synthetic fucosylGM-1 conjugated to keyhole limpet hemocyanin.Clin.CancerRes.10, 6094–6100.doi:10.1158/1078-0432.CCR-04-0482 Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article105 | 89
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics