Page - 89 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 89 -
Text of the Page - 89 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Helmy, K. Y., Patel, S. A., Nahas, G. R., and Rameshwar, P. (2013). Cancer
immunotherapy: accomplishments to date and future promise.Ther. Deliv. 4,
1307–1320.doi:10.4155/tde.13.88
Henderson,R.A.,Mossman,S.,Nairn,N., andCheever,M.A. (2005).Cancervac-
cinesandimmunotherapies:emergingperspectives.Vaccine23,2359–2362.doi:
10.1016/j.vaccine.2005.01.082
Herwig,M.C.,Bergstrom,C.,Wells,J.R.,Holler,T.,andGrossniklaus,H.E.(2013).
M2/M1ratiooftumorassociatedmacrophagesandPPAR-gammaexpressionin
uvealmelanomaswith class 1 andclass 2molecularprofiles.Exp.EyeRes.107,
52–58.doi:10.1016/j.exer.2012.11.012
Higgins, J. P., Bernstein, M. B., and Hodge, J. W. (2009). Enhancing immune
responses to tumor-associated antigens.Cancer Biol. Ther. 8, 1440–1449. doi:
10.4161/cbt.8.15.9133
Hildner,K.,Edelson,B.T.,Purtha,W.E.,Diamond,M.,Matsushita,H.,Kohyama,
M.,etal. (2008).Batf3deficiencyrevealsacriticalroleforCD8alpha+dendritic
cells in cytotoxic T cell immunity. Science 322, 1097–1100. doi: 10.1126/sci-
ence.1164206
Hillaireau,H., andCouvreur,P. (2009).Nanocarriers’ entry into thecell: relevance
to drug delivery.Cell. Mol. Life Sci. 66, 2873–2896. doi: 10.1007/s00018-009-
0053-z
Hinrichs,C. S.,Borman,Z.A.,Gattinoni, L.,Yu,Z.,Burns,W.R.,Huang, J., et al.
(2011). Human effector CD8+T cells derived fromnaive rather thanmem-
ory subsets possess superior traits for adoptive immunotherapy. Blood 117,
808–814.doi:10.1182/blood-2010-05-286286
Hong, H., Yang, K., Zhang, Y., Engle, J. W., Feng, L., Yang, Y., et al. (2012). In
vivo targeting and imaging of tumor vasculaturewith radiolabeled, antibody-
conjugatednanographene.ACSNano6,2361–2370.doi:10.1021/nn204625e
Hughes,M.S.,Marsh,J.N.,Zhang,H.,Woodson,A.K.,Allen,J.S.,Lacy,E.K.,etal.
(2006). Characterization of digital waveforms using thermodynamic analogs:
detection of contrast-targeted tissue in vivo. IEEETrans. Ultrason. Ferroelectr.
Freq.Control53,1609–1616.doi:10.1109/TUFFC.2006.1678189
Hurwitz,A.A., Foster, B.A.,Kwon, E.D., Truong,T.,Choi, E.M.,Greenberg,N.
M., etal. (2000).Combination immunotherapyofprimaryprostatecancer ina
transgenicmousemodelusingCTLA-4blockade.CancerRes.60,2444–2448.
Huwyler, J.,Drewe, J.,andKrahenbuhl,S. (2008).Tumortargetingusingliposomal
antineoplasticdrugs. Int. J.Nanomedicine3,21–29.doi:10.2147/IJN.S1253
Ino, Y., Yamazaki-Itoh, R., Shimada, K., Iwasaki,M., Kosuge, T., Kanai, Y., et al.
(2013). Immunecell infiltration as an indicatorof the immunemicroenviron-
mentofpancreaticcancer.Br. J.Cancer108,914–923.doi:10.1038/bjc.2013.32
Ivkov, R., Denardo, S. J., Daum,W., Foreman, A. R., Goldstein, R. C., Nemkov,
V. S., et al. (2005). Application of high amplitude alternatingmagnetic fields
for heat induction of nanoparticles localized in cancer.Clin. Cancer Res. 11,
7093s–7103s.doi:10.1158/1078-0432.CCR-1004-0016
Iyer, A. K., Khaled, G., Fang, J., andMaeda,H. (2006). Exploiting the enhanced
permeability and retention effect for tumor targeting.DrugDiscov. Today 11,
812–818.doi:10.1016/j.drudis.2006.07.005
Jain, T. K., Foy, S. P., Erokwu, B., Dimitrijevic, S., Flask, C. A., and Labhasetwar,
V. (2009).Magnetic resonance imaging ofmultifunctional pluronic stabilized
iron-oxide nanoparticles in tumor-bearingmice.Biomaterials 30, 6748–6756.
doi:10.1016/j.biomaterials.2009.08.042
Jang, B., Park, S., Kang, S. H., Kim, J. K., Kim, S. K., Kim, I. H., et al. (2012).
Gold nanorods for target selective SPECT/CT imaging and photothermal
therapy in vivo.Quant. ImagingMed. Surg. 2, 1–11. doi: 10.3978/.issn.2223-
4292.2012.01.03
Janjic, J.M.,andAhrens,E.T.(2009).Fluorine-containingnanoemulsionsforMRI
cell tracking.Wiley Interdiscip.Rev.Nanomed.Nanobiotechnol.1,492–501.doi:
10.1002/wnan.35
Jarrett, B. R., Gustafsson, B., Kukis, D. L., and Louie, A. Y. (2008). Synthesis
of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug.
Chem.19,1496–1504.doi:10.1021/bc800108v
Jhaveri, A. M., and Torchilin, V. P. (2014). Multifunctional polymeric
micelles for delivery of drugs and siRNA. Front. Pharmacol. 5:77. doi:
10.3389/fphar.2014.00077
Johansen, P., Estevez, F., Zurbriggen, R., Merkle, H. P., Gluck, R., Corradin, G.,
et al. (2000).Towardsclinical testingofa single-administration tetanusvaccine
basedonPLA/PLGAmicrospheres.Vaccine19,1047–1054.doi:10.1016/S0264-
410X(00)00343-1
Joshi, P. P., Yoon, S. J., Chen, Y. S., Emelianov, S., and Sokolov, K. V. (2013).
Development and optimization of near-IR contrast agents for immune cell tracking. Biomed. Opt. Express 4, 2609–2618. doi: 10.1364/BOE.4.
002609
Kaida, S., Cabral, H., Kumagai,M., Kishimura, A., Terada, Y., Sekino,M., et al.
(2010). Visible drug delivery by supramolecular nanocarriers directing to
single-platformed diagnosis and therapy of pancreatic tumormodel. Cancer
Res.70,7031–7041.doi:10.1158/0008-5472.CAN-10-0303
Kazzaz, J., Singh,M.,Ugozzoli,M., Chesko, J., Soenawan, E., andO’Hagan,D.T.
(2006). Encapsulation of the immune potentiators MPL and RC529 in PLG
microparticles enhances their potency. J. Control. Release 110, 566–573. doi:
10.1016/j.jconrel.2005.10.010
Keller, S.,Wilson, J. T., Patilea, G. I., Kern,H. B., Convertine, A. J., and Stayton,
P. S. (2014).Neutral polymermicelle carrierswith pH-responsive, endosome-
releasingactivitymodulateantigentraffickingtoenhanceCD8Tcell responses.
J.Control.Release191,24–33.doi:10.1016/j.jconrel.2014.03.041
Kenny,G.D.,Kamaly,N.,Kalber,T.L.,Brody,L.P., Sahuri,M.,Shamsaei,E., et al.
(2011). Novelmultifunctional nanoparticlemediates siRNA tumour delivery,
visualisationand therapeutic tumour reduction in vivo. J.Control.Release149,
111–116.doi:10.1016/j.jconrel.2010.09.020
Khan, D. R., Rezler, E. M., Lauer-Fields, J., and Fields, G. B. (2008). Effects of
drughydrophobicityon liposomal stability.Chem.Biol.DrugDes.71,3–7.doi:
10.1111/j.1747-0285.2007.00610.x
Kikkeri, R., Lepenies, B., Adibekian, A., Laurino, P., and Seeberger, P.H. (2009).
Invitro imagingand in vivo liver targetingwithcarbohydrate cappedquantum
dots. J.Am.Chem.Soc.131,2110–2112.doi:10.1021/ja807711w
Kim,J.,Kim,H.S.,Lee,N.,Kim,T.,Kim,H.,Yu,T., etal. (2008a).Multifunctional
uniform nanoparticles composed of a magnetite nanocrystal core and a
mesoporous silica shell for magnetic resonance and fluorescence imaging
and for drug delivery. Angew. Chem. Int. Ed Engl. 47, 8438–8441. doi:
10.1002/anie.200802469
Kim,J.,Lee, J.E.,Lee,S.H.,Yu,J.H.,Lee, J.H.,Park,T.G.,etal. (2008b).Designed
fabricationof amultifunctionalpolymernanomedicalplatformfor simultane-
ouscancer-targetedimagingandmagneticallyguideddrugdelivery.Adv.Mater.
20,478.doi:10.1002/adma.200701726
Kim, S., Lim, Y. T., Soltesz, E. G., DeGrand, A.M., Lee, J., Nakayama, A., et al.
(2004).Near-infraredfluorescenttypeIIquantumdotsforsentinel lymphnode
mapping.Nat.Biotechnol.22,93–97.doi:10.1038/nbt920
Kim, S.W., Zimmer, J. P., Ohnishi, S., Tracy, J. B., Frangioni, J. V., andBawendi,
M. G. (2005). Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell
quantumdots for thenear-infrared. J. Am.Chem. Soc.127, 10526–10532. doi:
10.1021/ja0434331
Kim,T.H., Jin,H.,Kim,H.W.,Cho,M.H., andCho,C.S. (2006).Mannosylated
chitosannanoparticle-basedcytokinegenetherapysuppressedcancergrowthin
BALB/cmice bearingCT-26 carcinoma cells.Mol.Cancer Ther. 5, 1723–1732.
doi:10.1158/1535-7163.MCT-05-0540
Kindt,T. J.,Goldsby,R.A.,Osborne,B.A., andKuby, J. (2006).KubyImmunology.
NewYork,NY;Basingstoke:W.H.Freeman.
Kircher, M. F., Allport, J. R., Graves, E. E., Love, V., Josephson, L., Lichtman,
A. H., et al. (2003). In vivo high resolution three-dimensional imaging of
antigen-specific cytotoxic T-lymphocyte trafficking to tumors.Cancer Res. 63,
6838–6846.
Kircher, M. F., Gambhir, S. S., and Grimm, J. (2011). Noninvasive cell-tracking
methods.Nat.Rev.Clin.Oncol.8,677–688.doi:10.1038/nrclinonc.2011.141
Kirkwood, J. M., Butterfield, L. H., Tarhini, A. A., Zarour, H., Kalinski, P., and
Ferrone, S. (2012). Immunotherapy of cancer in 2012.CACancer J. Clin. 62,
309–335.doi:10.3322/caac.20132
Koebel, C.M., Vermi,W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., et al.
(2007). Adaptive immunity maintains occult cancer in an equilibrium state.
Nature450,903–907.doi:10.1038/nature06309
Kopelman,R.,Koo,Y.E.L.,Philbert,M.,Moffat,B.A.,Reddy,G.R.,McConville,P.,
et al. (2005).Multifunctionalnanoparticleplatforms for in vivoMRIenhance-
ment andphotodynamic therapy of a rat brain cancer. J.Magn.Magn.Mater.
293,404–410.doi:10.1016/j.jmmm.2005.02.061
Krishnamachari, Y., Geary, S. M., Lemke, C. D., and Salem, A. K. (2011).
Nanoparticledelivery systems incancervaccines.Pharm.Res.28,215–236.doi:
10.1007/s11095-010-0241-4
Krug, L. M., Ragupathi, G., Hood, C., Kris, M. G., Miller, V. A., Allen, J. R.,
et al. (2004).Vaccinationofpatientswith small-cell lungcancerwith synthetic
fucosylGM-1 conjugated to keyhole limpet hemocyanin.Clin.CancerRes.10,
6094–6100.doi:10.1158/1078-0432.CCR-04-0482
Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article105 | 89
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie