Seite - 105 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 105 -
Text der Seite - 105 -
Mahmoudi andHadjipanayis Applicationofmagneticnanoparticles forbrain tumors
Chertok, B., Moffat, B. A., David, A. E., Yu, F.,
Bergemann, C., Ross, B. D., et al. (2008). Iron
oxide nanoparticles as a drug delivery vehi-
cle for MRI monitored magnetic targeting of
brain tumors. Biomaterials 29, 487–496. doi:
10.1016/j.biomaterials.2007.08.050
Deissler, R. J., Wu, Y., and Martens, M. A. (2014).
Dependenceofbrownianandneelrelaxationtimes
onmagneticfield strength.Med.Phys.41,012301.
doi:10.1118/1.4837216
Fajardo, L. F. (1984). Pathological effects of hyper-
thermia in normal tissues. Cancer Res. 44,
4826s–4835s.
Gahramanov, S., Raslan, A. M., Muldoon, L. L.,
Hamilton, B. E., Rooney, W. D., Varallyay, C.
G., et al. (2011). Potential for differentiation of
pseudoprogression from true tumor progression
with dynamic susceptibility-weighted contrast-
enhancedmagnetic resonance imaging using fer-
umoxytol vs. gadoteridol: a pilot study. Int.
J. Radiat. Oncol. Biol. Phys. 79, 514–523. doi:
10.1016/j.ijrobp.2009.10.072
Gambarota, G., and Leenders, W. (2011).
Characterization of tumor vasculature in
mouse brain by USPIO contrast-enhanced
MRI. Methods Mol. Biol. 771, 477–487. doi:
10.1007/978-1-61779-219-9_25
Guedes, M. H. A., Guedes, M. E. A., Morais, P.
C., Da Silva, M. F., Santos, T. S., Alves, J.
P. Jr., et al. (2004). Proposal of a magnetohy-
perthermia system: preliminary biological tests.
J. Magn. Magn. Mat. 272–276(Pt 3), 2406–2407.
doi:10.1016/j.jmmm.2003.12.709
Hadjipanayis,C.G.,Bouras,A.,andChang,S.(2013).
Applications of multifunctional nanoparticles in
malignant brain tumours.Eur. Assoc. Neurooncol.
Mag.4,9–15.
Hadjipanayis, C. G., Machaidze, R., Kaluzova, M.,
Wang, L., Schuette, A. J., Chen, H., et al.
(2010). EGFRvIII antibody-conjugated ironoxide
nanoparticles for magnetic resonance imaging-
guided convection-enhanced delivery and tar-
geted therapy of glioblastoma. Cancer Res. 70,
6303–6312.doi:10.1158/0008-5472
Hou, L. C., Veeravagu, A., Hsu, A. R., and Tse,
V. C. (2006). Recurrent glioblastoma multi-
forme: a review of natural history and man-
agement options. Neurosurg. Focus 20, E5. doi:
10.3171/foc.2006.20.4.2
Issels, R. D. (2008). Hyperthermia adds to
chemotherapy. Eur. J. Cancer 44, 2546–2554.
doi:10.1016/j.ejca.2008.07.038
Jain, R. K. (2001). Normalizing tumor vasculature
with anti-angiogenic therapy: anewparadigmfor
combination therapy.Nat.Med. 7, 987–989. doi:
10.1038/nm0901-987
Jain, R. K. (2005). Normalization of tumor vas-
culature: an emerging concept in antiangiogenic
therapy. Science 307, 58–62. doi: 10.1126/sci-
ence.1104819
Johnson, D., and O’Neill, B. (2012). Glioblastoma
survival in the United States before and dur-
ing the temozolomide era. J. Neuro Oncol.
107, 359–364. doi: 10.1007/s11060-011-
0749-4
Jordan, A., Scholz, R., Wust, P., Fähling, H., and
Roland, F. (1999). Magnetic fluid hyperthermia
(MFH): cancer treatmentwithACmagnetic field induced excitationof biocompatible superparam-
agnetic nanoparticles. J. Magn. Magn. Mat. 201,
413–419.doi:10.1016/S0304-8853(99)00088-8
Kampinga, H. H. (2006). Cell biological effects of
hyperthermia alone or combined with radiation
or drugs: a short introduction to newcomers in
the field. Int. J. Hyperthermia 22, 191–196. doi:
10.1080/02656730500532028
Kim,S.-S.,Rait,A.,Kim,E.,Pirollo,K.F.,Nishida,M.,
Farkas, N., et al. (2014). A nanoparticle carrying
thep53gene targets tumors includingcancer stem
cells, sensitizes glioblastoma tochemotherapyand
improves survival. ACS Nano 8, 5494–5514. doi:
10.1021/nn5014484
Kumar, M., Medarova, Z., Pantazopoulos, P., Dai,
G., and Moore, A. (2010). Novel membrane-
permeable contrast agent for brain tumor detec-
tionbyMRI.Magn.Reson.Med.63, 617–624.doi:
10.1002/mrm.22216
Liu, H.-L., Hua, M.-Y., Yang, H.-W., Huang, C.-Y.,
Chu,P.-C.,Wu, J.-S., et al. (2010).Magnetic reso-
nancemonitoringof focusedultrasound/magnetic
nanoparticle targeting delivery of therapeutic
agents to the brain. Proc. Natl. Acad. Sci.
U.S.A. 107, 15205–15210. doi: 10.1073/pnas.1003
388107
Loehrer, P. J. Sr., Feng, Y., Cardenes, H.,Wagner, L.,
Brell, J. M., Cella, D., et al. (2011). Gemcitabine
alone versus gemcitabine plus radiotherapy
in patients with locally advanced pancre-
atic cancer: an eastern cooperative oncology
group trial. J. Clin. Oncol. 29, 4105–4112. doi:
10.1200/JCO.2011.34.8904
Mahmoudi, M., Hofmann, H., Rothen-Rutishauser,
B., andPetri-Fink,A. (2012).Assessingthe invitro
and in vivo toxicity of superparamagnetic iron
oxide nanoparticles.Chem. Rev. 112, 2323–2338.
doi:10.1021/cr2002596
Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow,
U.,Wust,P.,Thiesen,B., et al. (2007). Intracranial
thermotherapyusingmagneticnanoparticlescom-
bined with external beam radiotherapy: results
of a feasibility study on patients with glioblas-
toma multiforme. J. Neurooncol. 81, 53–60. doi:
10.1007/s11060-006-9195-0
Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff,
H., Wust, P., Thiesen, B., et al. (2011). Efficacy
and safety of intratumoral thermotherapy using
magnetic iron-oxidenanoparticles combinedwith
external beam radiotherapy on patients with
recurrent glioblastomamultiforme. J.Neurooncol.
103,317–324.doi:10.1007/s11060-010-0389-0
Marcos-Campos, I., AsĂn, L., Torres, T. E.,Marquina,
C.,Tres,A., Ibarra,M.R., et al. (2011).Cell death
induced by the application of alternating mag-
netic fields to nanoparticle-loadeddendritic cells.
Nanotechnology 22:205101. doi: 10.1088/0957-
4484/22/20/205101
Meenach, S. A., Hilt, J. Z., and Anderson, K.
W. (2010). Poly(ethylene glycol)-based magnetic
hydrogel nanocomposites for hyperthermia can-
cer therapy. Acta Biomater. 6, 1039–1046. doi:
10.1016/j.actbio.2009.10.017
Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M.,
Lee, I. S., et al. (2007).Developmentof aT1 con-
trast agent formagnetic resonance imaging using
MnO nanoparticles. Angew. Chem. Int. Ed. Engl.
46,5397–5401.doi:10.1002/anie.200604775 Pankhurst, Q. A., Connolly, J., Jones, S. K., and
Dobson, J. (2003). Applications of magnetic
nanoparticles inbiomedicine. J. Phys.D36,R167.
doi:10.1088/0022-3727/36/13/201
Pu, P.-Y., Zhang, Y.-Z., and Jiang, D.-H. (2013).
Apoptosis induced by hyperthermia in human
glioblastoma cell line and murine glioblas-
toma. Chin. J. Cancer Res. 12, 257–262. doi:
10.1007/BF02983501
Rhee, J.G.,Eddy,H.A.,Harrison,G.H., andSalazar,
O.M. (1990).Heat-sensitive stateofmousemam-
mary carcinoma cells in tumors.Radiat. Res. 123,
165–170.doi:10.2307/3577540
Salazar, O. M., Rubin, P., McDonald, J. V., and
Feldstein,M.L. (1976).Highdose radiation ther-
apyinthetreatmentofglioblastomamultiforme:a
preliminaryreport. Int. J.Radiat.Oncol.Biol.Phys.
1,717–727.doi:10.1016/0360-3016(76)90155-3
Sandhiya, S., Dkhar, S. A., and Surendiran, A.
(2009). Emerging trends of nanomedicine–an
overview. Fundam.Clin. Pharmacol. 23, 263–269.
doi:10.1111/j.1472-8206.2009.00692.x
Stupp, R., Mason, W. P., Van Den Bent, M. J.,
Weller, M., Fisher, B., Taphoorn, M. J., et al.
(2005).Radiotherapyplus concomitant andadju-
vant temozolomide for glioblastoma. N. Engl. J.
Med.352,987–996.doi:10.1056/NEJMoa043330
Tajes, M., Ramos-Fernandez, E., Weng-Jiang, X.,
Bosch-Morato, M., Guivernau, B., Eraso-Pichot,
A., et al. (2014). The blood-brain barrier: struc-
ture, function and therapeutic approaches to
cross it. Mol. Membr. Biol. 31, 152–167. doi:
10.3109/09687688.2014.937468
Thiesen, B., and Jordan, A. (2008). Clinical appli-
cations of magnetic nanoparticles for hyper-
thermia. Int. J. Hyperthermia. 24, 467–474. doi:
10.1080/02656730802104757
Thorek,D.L.,Chen,A.K.,Czupryna,J.,andTsourkas,
A.(2006).Superparamagneticironoxidenanopar-
ticle probes formolecular imaging.Ann. Biomed.
Eng.34,23–38.doi:10.1007/s10439-005-9002-7
Van Landeghem, F. K. H., Maier-Hauff, K., Jordan,
A., Hoffmann, K.-T., Gneveckow, U., Scholz, R.,
et al. (2009).Post-mortemstudies inglioblastoma
patients treated with thermotherapy using mag-
netic nanoparticles. Biomaterials 30, 52–57. doi:
10.1016/j.biomaterials.2008.09.044
Varallyay, P., Nesbit, G., Muldoon, L. L., Nixon,
R. R., Delashaw, J., Cohen, J. I., et al. (2002).
Comparisonof twosuperparamagneticviral-sized
ironoxideparticlesferumoxidesandferumoxtran-
10with a gadoliniumchelate in imaging intracra-
nial tumors.Am.J.Neuroradiol.23,510–519.
Wankhede, M., Bouras, A., Kaluzova, M., and
Hadjipanayis, C. G. (2012). Magnetic nanopar-
ticles: an emerging technology for malignant
brain tumor imaging and therapy.Exp. Rev. Clin.
Pharmacol.5,173–186.doi:10.1586/ecp.12.1
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau,
B., Gellermann, J., Riess, H., et al. (2002).
Hyperthermia in combined treatment of cancer.
Lancet Oncol. 3, 487–497. doi: 10.1016/S1470-
2045(02)00818-5
Yanase,M., Shinkai,M.,Honda,H.,Wakabayashi,T.,
Yoshida, J., andKobayashi,T. (1997). Intracellular
hyperthermia for cancer usingmagnetite cationic
liposomes: ex vivo study. Jpn. J. Cancer Res. 88,
630–632.doi:10.1111/j.1349-7006.1997.tb00429.x
Frontiers inChemistry | ChemicalEngineering December2014 |Volume2 |Article109 | 105
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie