Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Page - 105 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 105 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Image of the Page - 105 -

Image of the Page - 105 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text of the Page - 105 -

Mahmoudi andHadjipanayis Applicationofmagneticnanoparticles forbrain tumors Chertok, B., Moffat, B. A., David, A. E., Yu, F., Bergemann, C., Ross, B. D., et al. (2008). Iron oxide nanoparticles as a drug delivery vehi- cle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496. doi: 10.1016/j.biomaterials.2007.08.050 Deissler, R. J., Wu, Y., and Martens, M. A. (2014). Dependenceofbrownianandneelrelaxationtimes onmagneticfield strength.Med.Phys.41,012301. doi:10.1118/1.4837216 Fajardo, L. F. (1984). Pathological effects of hyper- thermia in normal tissues. Cancer Res. 44, 4826s–4835s. Gahramanov, S., Raslan, A. M., Muldoon, L. L., Hamilton, B. E., Rooney, W. D., Varallyay, C. G., et al. (2011). Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast- enhancedmagnetic resonance imaging using fer- umoxytol vs. gadoteridol: a pilot study. Int. J. Radiat. Oncol. Biol. Phys. 79, 514–523. doi: 10.1016/j.ijrobp.2009.10.072 Gambarota, G., and Leenders, W. (2011). Characterization of tumor vasculature in mouse brain by USPIO contrast-enhanced MRI. Methods Mol. Biol. 771, 477–487. doi: 10.1007/978-1-61779-219-9_25 Guedes, M. H. A., Guedes, M. E. A., Morais, P. C., Da Silva, M. F., Santos, T. S., Alves, J. P. Jr., et al. (2004). Proposal of a magnetohy- perthermia system: preliminary biological tests. J. Magn. Magn. Mat. 272–276(Pt 3), 2406–2407. doi:10.1016/j.jmmm.2003.12.709 Hadjipanayis,C.G.,Bouras,A.,andChang,S.(2013). Applications of multifunctional nanoparticles in malignant brain tumours.Eur. Assoc. Neurooncol. Mag.4,9–15. Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., et al. (2010). EGFRvIII antibody-conjugated ironoxide nanoparticles for magnetic resonance imaging- guided convection-enhanced delivery and tar- geted therapy of glioblastoma. Cancer Res. 70, 6303–6312.doi:10.1158/0008-5472 Hou, L. C., Veeravagu, A., Hsu, A. R., and Tse, V. C. (2006). Recurrent glioblastoma multi- forme: a review of natural history and man- agement options. Neurosurg. Focus 20, E5. doi: 10.3171/foc.2006.20.4.2 Issels, R. D. (2008). Hyperthermia adds to chemotherapy. Eur. J. Cancer 44, 2546–2554. doi:10.1016/j.ejca.2008.07.038 Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: anewparadigmfor combination therapy.Nat.Med. 7, 987–989. doi: 10.1038/nm0901-987 Jain, R. K. (2005). Normalization of tumor vas- culature: an emerging concept in antiangiogenic therapy. Science 307, 58–62. doi: 10.1126/sci- ence.1104819 Johnson, D., and O’Neill, B. (2012). Glioblastoma survival in the United States before and dur- ing the temozolomide era. J. Neuro Oncol. 107, 359–364. doi: 10.1007/s11060-011- 0749-4 Jordan, A., Scholz, R., Wust, P., Fähling, H., and Roland, F. (1999). Magnetic fluid hyperthermia (MFH): cancer treatmentwithACmagnetic field induced excitationof biocompatible superparam- agnetic nanoparticles. J. Magn. Magn. Mat. 201, 413–419.doi:10.1016/S0304-8853(99)00088-8 Kampinga, H. H. (2006). Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia 22, 191–196. doi: 10.1080/02656730500532028 Kim,S.-S.,Rait,A.,Kim,E.,Pirollo,K.F.,Nishida,M., Farkas, N., et al. (2014). A nanoparticle carrying thep53gene targets tumors includingcancer stem cells, sensitizes glioblastoma tochemotherapyand improves survival. ACS Nano 8, 5494–5514. doi: 10.1021/nn5014484 Kumar, M., Medarova, Z., Pantazopoulos, P., Dai, G., and Moore, A. (2010). Novel membrane- permeable contrast agent for brain tumor detec- tionbyMRI.Magn.Reson.Med.63, 617–624.doi: 10.1002/mrm.22216 Liu, H.-L., Hua, M.-Y., Yang, H.-W., Huang, C.-Y., Chu,P.-C.,Wu, J.-S., et al. (2010).Magnetic reso- nancemonitoringof focusedultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc. Natl. Acad. Sci. U.S.A. 107, 15205–15210. doi: 10.1073/pnas.1003 388107 Loehrer, P. J. Sr., Feng, Y., Cardenes, H.,Wagner, L., Brell, J. M., Cella, D., et al. (2011). Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancre- atic cancer: an eastern cooperative oncology group trial. J. Clin. Oncol. 29, 4105–4112. doi: 10.1200/JCO.2011.34.8904 Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B., andPetri-Fink,A. (2012).Assessingthe invitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles.Chem. Rev. 112, 2323–2338. doi:10.1021/cr2002596 Maier-Hauff, K., Rothe, R., Scholz, R., Gneveckow, U.,Wust,P.,Thiesen,B., et al. (2007). Intracranial thermotherapyusingmagneticnanoparticlescom- bined with external beam radiotherapy: results of a feasibility study on patients with glioblas- toma multiforme. J. Neurooncol. 81, 53–60. doi: 10.1007/s11060-006-9195-0 Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., et al. (2011). Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxidenanoparticles combinedwith external beam radiotherapy on patients with recurrent glioblastomamultiforme. J.Neurooncol. 103,317–324.doi:10.1007/s11060-010-0389-0 Marcos-Campos, I., Asín, L., Torres, T. E.,Marquina, C.,Tres,A., Ibarra,M.R., et al. (2011).Cell death induced by the application of alternating mag- netic fields to nanoparticle-loadeddendritic cells. Nanotechnology 22:205101. doi: 10.1088/0957- 4484/22/20/205101 Meenach, S. A., Hilt, J. Z., and Anderson, K. W. (2010). Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia can- cer therapy. Acta Biomater. 6, 1039–1046. doi: 10.1016/j.actbio.2009.10.017 Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M., Lee, I. S., et al. (2007).Developmentof aT1 con- trast agent formagnetic resonance imaging using MnO nanoparticles. Angew. Chem. Int. Ed. Engl. 46,5397–5401.doi:10.1002/anie.200604775 Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J. (2003). Applications of magnetic nanoparticles inbiomedicine. J. Phys.D36,R167. doi:10.1088/0022-3727/36/13/201 Pu, P.-Y., Zhang, Y.-Z., and Jiang, D.-H. (2013). Apoptosis induced by hyperthermia in human glioblastoma cell line and murine glioblas- toma. Chin. J. Cancer Res. 12, 257–262. doi: 10.1007/BF02983501 Rhee, J.G.,Eddy,H.A.,Harrison,G.H., andSalazar, O.M. (1990).Heat-sensitive stateofmousemam- mary carcinoma cells in tumors.Radiat. Res. 123, 165–170.doi:10.2307/3577540 Salazar, O. M., Rubin, P., McDonald, J. V., and Feldstein,M.L. (1976).Highdose radiation ther- apyinthetreatmentofglioblastomamultiforme:a preliminaryreport. Int. J.Radiat.Oncol.Biol.Phys. 1,717–727.doi:10.1016/0360-3016(76)90155-3 Sandhiya, S., Dkhar, S. A., and Surendiran, A. (2009). Emerging trends of nanomedicine–an overview. Fundam.Clin. Pharmacol. 23, 263–269. doi:10.1111/j.1472-8206.2009.00692.x Stupp, R., Mason, W. P., Van Den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., et al. (2005).Radiotherapyplus concomitant andadju- vant temozolomide for glioblastoma. N. Engl. J. Med.352,987–996.doi:10.1056/NEJMoa043330 Tajes, M., Ramos-Fernandez, E., Weng-Jiang, X., Bosch-Morato, M., Guivernau, B., Eraso-Pichot, A., et al. (2014). The blood-brain barrier: struc- ture, function and therapeutic approaches to cross it. Mol. Membr. Biol. 31, 152–167. doi: 10.3109/09687688.2014.937468 Thiesen, B., and Jordan, A. (2008). Clinical appli- cations of magnetic nanoparticles for hyper- thermia. Int. J. Hyperthermia. 24, 467–474. doi: 10.1080/02656730802104757 Thorek,D.L.,Chen,A.K.,Czupryna,J.,andTsourkas, A.(2006).Superparamagneticironoxidenanopar- ticle probes formolecular imaging.Ann. Biomed. Eng.34,23–38.doi:10.1007/s10439-005-9002-7 Van Landeghem, F. K. H., Maier-Hauff, K., Jordan, A., Hoffmann, K.-T., Gneveckow, U., Scholz, R., et al. (2009).Post-mortemstudies inglioblastoma patients treated with thermotherapy using mag- netic nanoparticles. Biomaterials 30, 52–57. doi: 10.1016/j.biomaterials.2008.09.044 Varallyay, P., Nesbit, G., Muldoon, L. L., Nixon, R. R., Delashaw, J., Cohen, J. I., et al. (2002). Comparisonof twosuperparamagneticviral-sized ironoxideparticlesferumoxidesandferumoxtran- 10with a gadoliniumchelate in imaging intracra- nial tumors.Am.J.Neuroradiol.23,510–519. Wankhede, M., Bouras, A., Kaluzova, M., and Hadjipanayis, C. G. (2012). Magnetic nanopar- ticles: an emerging technology for malignant brain tumor imaging and therapy.Exp. Rev. Clin. Pharmacol.5,173–186.doi:10.1586/ecp.12.1 Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., et al. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497. doi: 10.1016/S1470- 2045(02)00818-5 Yanase,M., Shinkai,M.,Honda,H.,Wakabayashi,T., Yoshida, J., andKobayashi,T. (1997). Intracellular hyperthermia for cancer usingmagnetite cationic liposomes: ex vivo study. Jpn. J. Cancer Res. 88, 630–632.doi:10.1111/j.1349-7006.1997.tb00429.x Frontiers inChemistry | ChemicalEngineering December2014 |Volume2 |Article109 | 105
back to the  book Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Title
Cancer Nanotheranostics
Subtitle
What Have We Learnd So Far?
Authors
João Conde
Pedro Viana Baptista
Jesús M. De La Fuente
Furong Tian
Editor
Frontiers in Chemistry
Date
2016
Language
English
License
CC BY 4.0
ISBN
978-2-88919-776-7
Size
21.0 x 27.7 cm
Pages
132
Keywords
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics