Seite - 115 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Bild der Seite - 115 -
Text der Seite - 115 -
Alcantaraet al. Molecular imagingofbreast cancer
Coffey, J. P., andHill, J. C. (2010). Breast sentinel node imaging with low-dose
SPECT/CT. Nucl. Med. Commun. 31, 107–111. doi: 10.1097/MNM.0b013e3
2832ed3a6
Contractor, K. B., Kenny, L. M., Stebbing, J., Al-Nahhas, A., Palmieri, C.,
Sinnett, D., et al. (2009). [11C]choline positron emission tomography in
estrogen receptor-positive breast cancer.Clin. Cancer Res. 15, 5503–5510. doi:
10.1158/1078-0432.CCR-09-0666
DeMattos-Arruda, L., Cortes, J., Santarpia, L., Vivancos, A., Tabernero, J., Reis-
Filho, J.S., et al. (2013).Circulating tumourcells andcell-freeDNAas tools for
managingbreast cancer.Nat.Rev.Clin.Oncol.10, 377–389.doi: 10.1038/nrcli-
nonc.2013.80
D’orsi,C.J.,andKopans,D.B.(1997).Mammographyinterpretation:theBI-RADS
method.Am.Fam.Physician55,1548–1550,1552.
Dromain, C., Balleyguier, C., Adler, G., Garbay, J. R., and Delaloge, S. (2009).
Contrast-enhanced digital mammography. Eur. J. Radiol. 69, 34–42. doi:
10.1016/j.ejrad.2008.07.035
Eccles, S. A., Aboagye, E.O., Ali, S., Anderson, A. S., Armes, J., Berditchevski, F.,
et al. (2013).Critical research gaps and translational priorities for the success-
ful prevention and treatment of breast cancer.BreastCancerRes.15,R92. doi:
10.1186/bcr3493
Ellenbroek, S. I. J., and Van Rheenen, J. (2014). Imaging hallmarks of cancer in
livingmice.Nat.Rev.Cancer14,406–418.doi:10.1038/nrc3742
Esposito,A.,Bardelli,A.,Criscitiello,C.,Colombo,N.,Gelao,L.,Fumagalli,L.,etal.
(2014).Monitoringtumor-derivedcell-freeDNAinpatientswithsolid tumors:
clinicalperspectivesandresearchopportunities.CancerTreat.Rev.40,648–655.
doi:10.1016/j.ctrv.2013.10.003
Fallenberg, E. M., Dromain, C., Diekmann, F., Renz, D. M., Amer, H., Ingold-
Heppner, B., et al. (2014). Contrast-enhanced spectral mammography: does
mammographyprovideadditionalclinicalbenefitsorcansomeradiationexpo-
sure be avoided?Breast Cancer Res. Treat. 146, 371–381. doi: 10.1007/s10549-
014-3023-6
Fleischhacker, M., and Schmidt, B. (2007). Circulating nucleic acids
(CNAs) and cancer–a survey. Biochim. Biophys. Acta 1775, 181–232. doi:
10.1016/j.bbcan.2006.10.001
Fornvik, D., Zackrisson, S., Ljungberg, O., Svahn, T., Timberg, P., Tingberg, A.,
et al. (2010).Breast tomosynthesis: accuracyof tumormeasurement compared
withdigitalmammographyandultrasonography.ActaRadiol.51,240–247.doi:
10.3109/02841850903524447
Gambini, J. P., Cabral, P., Alonso, O., Savio, E., Figueroa, S. D., Zhang, X.,
et al. (2011). Evaluation of 99mTc-glucarate as a breast cancer imaging
agent in a xenograft animal model. Nucl. Med. Biol. 38, 255–260. doi:
10.1016/j.nucmedbio.2010.08.002
Greaves, M., andMaley, C. C. (2012). Clonal evolution in cancer.Nature 481,
306–313.doi:10.1038/nature10762
Guo, Y., Cai, Y. Q., Cai, Z. L., Gao, Y. G., An, N. Y., Ma, L., et al.
(2002). Differentiation of clinically benign and malignant breast lesions
using diffusion-weighted imaging. J.Magn. Reson. Imaging 16, 172–178. doi:
10.1002/jmri.10140
Harbeck, N., Schmitt, M., Meisner, C., Friedel, C., Untch, M., Schmidt, M.,
et al. (2013). Ten-year analysis of the prospective multicentre Chemo-N0
trial validates American Society of Clinical Oncology (ASCO)-recommended
biomarkers uPA and PAI-1 for therapy decision making in node-negative
breast cancer patients. Eur. J. Cancer 49, 1825–1835. doi: 10.1016/j.ejca.2013.
01.007
Houssami, N., Given-Wilson, R., andCiatto, S. (2009). Early detection of breast
cancer: overviewof the evidenceoncomputer-aideddetection inmammogra-
physcreening. J.Med. ImagingRadiat.Oncol.53,171–176.doi:10.1111/j.1754-
9485.2009.02062.x
Huang,C.H., andTsourkas, A. (2013).Gd-basedmacromolecules andnanopar-
ticles asmagnetic resonance contrast agents formolecular imaging.Curr. Top.
Med.Chem.doi:10.2174/1568026611313040002
Husarik, D. B., and Steinert, H. C. (2007). Single-photon emission computed
tomography/computedtomographyforsentinelnodemappinginbreastcancer.
Semin.Nucl.Med.37,29–33.doi:10.1053/j.semnuclmed.2006.08.001
Itoh,A.,Ueno, E., Tohno, E., Kamma,H., Takahashi,H., Shiina, T., et al. (2006).
Breast disease: clinical applicationofUS elastography for diagnosis.Radiology
239,341–350.doi:10.1148/radiol.2391041676
Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., and Adam, G. (2013).
Superparamagnetic ironoxide nanoparticles in biomedicine: applications and developments indiagnostics and therapy.Rofo185, 1149–1166.doi: 10.1055/s-
0033-1335438
Jia,W. R., Chai,W.M., Tang, L.,Wang, Y., Fei, X. C., Han, B. S., et al. (2014).
Three-dimensional contrast enhancedultrasoundscoreanddynamiccontrast-
enhancedmagnetic resonance imaging score inevaluatingbreast tumorangio-
genesis: correlationwith biological factors.Eur. J. Radiol. 83, 1098–1105. doi:
10.1016/j.ejrad.2014.03.027
Jin, R., Lin, B., Li, D., and Ai, H. (2014). Superparamagnetic iron oxide
nanoparticles forMR imaging and therapy: design considerations and clini-
cal applications.Curr.Opin. Pharmacol.18C, 18–27. doi: 10.1016/j.coph.2014.
08.002
Kallaway, C., Almond, L. M., Barr, H., Wood, J., Hutchings, J., Kendall, C.,
et al. (2013). Advances in the clinical application of Raman spectroscopy
for cancer diagnostics. Photodiagnosis Photodyn. Ther. 10, 207–219. doi:
10.1016/j.pdpdt.2013.01.008
Kalles, V., Zografos, G. C., Provatopoulou, X., Koulocheri, D., andGounaris, A.
(2013).Thecurrentstatusofpositronemissionmammographyinbreastcancer
diagnosis.BreastCancer20,123–130.doi:10.1007/s12282-012-0433-3
Kievit, F. M., and Zhang, M. (2011). Surface engineering of iron oxide
nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44, 853–862. doi:
10.1021/ar2000277
Kjaer, A. (2006).Molecular imaging of cancer using PET and SPECT.Adv. Exp.
Med.Biol.587,277–284.doi:10.1007/978-1-4020-5133-3_21
Klintman,M.,Nilsson,F.,Bendahl,P.-O.,Fernö,M.,Liljegren,G.,Emdin,S., et al.
(2013).Aprospective,multicenter validation studyof aprognostic indexcom-
posed of S-phase fraction, progesterone receptor status, and tumour size pre-
dictssurvival innode-negativebreastcancerpatients:NNBC,thenode-negative
breast cancer trial.Ann.Oncol. doi:10.1093/annonc/mdt186
Klomp,D.W.,VanDeBank, B. L., Raaijmakers, A., Korteweg,M.A., Possanzini,
C., Boer, V.O., et al. (2011). 31PMRSI and 1HMRS at 7 T: initial results in
humanbreast cancer.NMRBiomed.24,1337–1342.doi:10.1002/nbm.1696
Knowles, S.M., andWu, A.M. (2012). Advances in immuno-positron emission
tomography: antibodies formolecular imaging inoncology. J. Clin.Oncol.30,
3884–3892.doi:10.1200/JCO.2012.42.4887
Kondo, T. (2014). Inconvenient truth: cancer biomarker development by using
proteomics.Biochim.Biophys.Acta1844, 861–865.doi: 10.1016/j.bbapap.2013.
07.009
Koolen, B. B., Vogel, W. V., Vrancken Peeters, M. J., Loo, C. E., Rutgers, E. J.,
and Valdes Olmos, R. A. (2012). Molecular imaging in breast cancer: from
whole-body PET/CT to dedicated breast PET. J. Oncol. 2012, 438647. doi:
10.1155/2012/438647
Kuhl, C. (2007). The current status of breast MR imaging. Part I. Choice of
technique, image interpretation, diagnostic accuracy, and transfer to clinical
practice.Radiology244,356–378.doi:10.1148/radiol.2442051620
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G.,
Granton, P., et al. (2012).Radiomics: extractingmore information frommed-
ical images using advanced feature analysis. Eur. J. Cancer 48, 441–446. doi:
10.1016/j.ejca.2011.11.036
Lee,B.T.,Hutteman,M.,Gioux,S.,Stockdale,A.,Lin,S.J.,Ngo,L.H.,etal.(2010).
The FLARE intraoperative near-infrared fluorescence imaging system: a first-
in-humanclinical trial inperforatorflapbreast reconstruction.Plast. Reconstr.
Surg.126,1472–1481.doi:10.1097/PRS.0b013e3181f059c7
Lerman, H., Lievshitz, G., Zak, O.,Metser, U., Schneebaum, S., and Even-Sapir,
E. (2007). Improved sentinel node identification by SPECT/CT in overweight
patientswithbreastcancer. J.Nucl.Med.48,201–206.Availabeonlineat:http://
jnm.snmjournals.org/content/48/2/201
Levi, J., Cheng, Z., Gheysens, O., Patel,M., Chan, C. T.,Wang, Y., et al. (2007).
Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug.
Chem.18,628–634.doi:10.1021/bc060184s
Li, K., Wen, S., Larson, A. C., Shen, M., Zhang, Z., Chen, Q., et al. (2013).
Multifunctionaldendrimer-basednanoparticles for invivoMR/CTdual-modal
molecular imaging of breast cancer. Int. J. Nanomedicine 8, 2589–2600. doi:
10.2147/IJN.S46177
Li, Q., Gao, Q., and Zhang, G. (2014). Classification for breast cancer diag-
nosis with Raman spectroscopy. Biomed. Opt. Express 5, 2435–2445. doi:
10.1364/BOE.5.002435
Liu,T.,Zhang, J.,Wang,X.,Yang, J.,Tang,Z., andLu, J. (2014).Radiolabeledglu-
cosederivatives fortumorimagingusingSPECTandPET.Curr.Med.Chem.21,
24–34.doi:10.2174/09298673113209990254
www.frontiersin.org December2014 |Volume2 |Article112 |115
Cancer Nanotheranostics
What Have We Learnd So Far?
- Titel
- Cancer Nanotheranostics
- Untertitel
- What Have We Learnd So Far?
- Autoren
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Herausgeber
- Frontiers in Chemistry
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Abmessungen
- 21.0 x 27.7 cm
- Seiten
- 132
- Schlagwörter
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Kategorien
- Naturwissenschaften Chemie