Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Page - 115 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 115 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Image of the Page - 115 -

Image of the Page - 115 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text of the Page - 115 -

Alcantaraet al. Molecular imagingofbreast cancer Coffey, J. P., andHill, J. C. (2010). Breast sentinel node imaging with low-dose SPECT/CT. Nucl. Med. Commun. 31, 107–111. doi: 10.1097/MNM.0b013e3 2832ed3a6 Contractor, K. B., Kenny, L. M., Stebbing, J., Al-Nahhas, A., Palmieri, C., Sinnett, D., et al. (2009). [11C]choline positron emission tomography in estrogen receptor-positive breast cancer.Clin. Cancer Res. 15, 5503–5510. doi: 10.1158/1078-0432.CCR-09-0666 DeMattos-Arruda, L., Cortes, J., Santarpia, L., Vivancos, A., Tabernero, J., Reis- Filho, J.S., et al. (2013).Circulating tumourcells andcell-freeDNAas tools for managingbreast cancer.Nat.Rev.Clin.Oncol.10, 377–389.doi: 10.1038/nrcli- nonc.2013.80 D’orsi,C.J.,andKopans,D.B.(1997).Mammographyinterpretation:theBI-RADS method.Am.Fam.Physician55,1548–1550,1552. Dromain, C., Balleyguier, C., Adler, G., Garbay, J. R., and Delaloge, S. (2009). Contrast-enhanced digital mammography. Eur. J. Radiol. 69, 34–42. doi: 10.1016/j.ejrad.2008.07.035 Eccles, S. A., Aboagye, E.O., Ali, S., Anderson, A. S., Armes, J., Berditchevski, F., et al. (2013).Critical research gaps and translational priorities for the success- ful prevention and treatment of breast cancer.BreastCancerRes.15,R92. doi: 10.1186/bcr3493 Ellenbroek, S. I. J., and Van Rheenen, J. (2014). Imaging hallmarks of cancer in livingmice.Nat.Rev.Cancer14,406–418.doi:10.1038/nrc3742 Esposito,A.,Bardelli,A.,Criscitiello,C.,Colombo,N.,Gelao,L.,Fumagalli,L.,etal. (2014).Monitoringtumor-derivedcell-freeDNAinpatientswithsolid tumors: clinicalperspectivesandresearchopportunities.CancerTreat.Rev.40,648–655. doi:10.1016/j.ctrv.2013.10.003 Fallenberg, E. M., Dromain, C., Diekmann, F., Renz, D. M., Amer, H., Ingold- Heppner, B., et al. (2014). Contrast-enhanced spectral mammography: does mammographyprovideadditionalclinicalbenefitsorcansomeradiationexpo- sure be avoided?Breast Cancer Res. Treat. 146, 371–381. doi: 10.1007/s10549- 014-3023-6 Fleischhacker, M., and Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer–a survey. Biochim. Biophys. Acta 1775, 181–232. doi: 10.1016/j.bbcan.2006.10.001 Fornvik, D., Zackrisson, S., Ljungberg, O., Svahn, T., Timberg, P., Tingberg, A., et al. (2010).Breast tomosynthesis: accuracyof tumormeasurement compared withdigitalmammographyandultrasonography.ActaRadiol.51,240–247.doi: 10.3109/02841850903524447 Gambini, J. P., Cabral, P., Alonso, O., Savio, E., Figueroa, S. D., Zhang, X., et al. (2011). Evaluation of 99mTc-glucarate as a breast cancer imaging agent in a xenograft animal model. Nucl. Med. Biol. 38, 255–260. doi: 10.1016/j.nucmedbio.2010.08.002 Greaves, M., andMaley, C. C. (2012). Clonal evolution in cancer.Nature 481, 306–313.doi:10.1038/nature10762 Guo, Y., Cai, Y. Q., Cai, Z. L., Gao, Y. G., An, N. Y., Ma, L., et al. (2002). Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J.Magn. Reson. Imaging 16, 172–178. doi: 10.1002/jmri.10140 Harbeck, N., Schmitt, M., Meisner, C., Friedel, C., Untch, M., Schmidt, M., et al. (2013). Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur. J. Cancer 49, 1825–1835. doi: 10.1016/j.ejca.2013. 01.007 Houssami, N., Given-Wilson, R., andCiatto, S. (2009). Early detection of breast cancer: overviewof the evidenceoncomputer-aideddetection inmammogra- physcreening. J.Med. ImagingRadiat.Oncol.53,171–176.doi:10.1111/j.1754- 9485.2009.02062.x Huang,C.H., andTsourkas, A. (2013).Gd-basedmacromolecules andnanopar- ticles asmagnetic resonance contrast agents formolecular imaging.Curr. Top. Med.Chem.doi:10.2174/1568026611313040002 Husarik, D. B., and Steinert, H. C. (2007). Single-photon emission computed tomography/computedtomographyforsentinelnodemappinginbreastcancer. Semin.Nucl.Med.37,29–33.doi:10.1053/j.semnuclmed.2006.08.001 Itoh,A.,Ueno, E., Tohno, E., Kamma,H., Takahashi,H., Shiina, T., et al. (2006). Breast disease: clinical applicationofUS elastography for diagnosis.Radiology 239,341–350.doi:10.1148/radiol.2391041676 Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., and Adam, G. (2013). Superparamagnetic ironoxide nanoparticles in biomedicine: applications and developments indiagnostics and therapy.Rofo185, 1149–1166.doi: 10.1055/s- 0033-1335438 Jia,W. R., Chai,W.M., Tang, L.,Wang, Y., Fei, X. C., Han, B. S., et al. (2014). Three-dimensional contrast enhancedultrasoundscoreanddynamiccontrast- enhancedmagnetic resonance imaging score inevaluatingbreast tumorangio- genesis: correlationwith biological factors.Eur. J. Radiol. 83, 1098–1105. doi: 10.1016/j.ejrad.2014.03.027 Jin, R., Lin, B., Li, D., and Ai, H. (2014). Superparamagnetic iron oxide nanoparticles forMR imaging and therapy: design considerations and clini- cal applications.Curr.Opin. Pharmacol.18C, 18–27. doi: 10.1016/j.coph.2014. 08.002 Kallaway, C., Almond, L. M., Barr, H., Wood, J., Hutchings, J., Kendall, C., et al. (2013). Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis Photodyn. Ther. 10, 207–219. doi: 10.1016/j.pdpdt.2013.01.008 Kalles, V., Zografos, G. C., Provatopoulou, X., Koulocheri, D., andGounaris, A. (2013).Thecurrentstatusofpositronemissionmammographyinbreastcancer diagnosis.BreastCancer20,123–130.doi:10.1007/s12282-012-0433-3 Kievit, F. M., and Zhang, M. (2011). Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44, 853–862. doi: 10.1021/ar2000277 Kjaer, A. (2006).Molecular imaging of cancer using PET and SPECT.Adv. Exp. Med.Biol.587,277–284.doi:10.1007/978-1-4020-5133-3_21 Klintman,M.,Nilsson,F.,Bendahl,P.-O.,FernΓΆ,M.,Liljegren,G.,Emdin,S., et al. (2013).Aprospective,multicenter validation studyof aprognostic indexcom- posed of S-phase fraction, progesterone receptor status, and tumour size pre- dictssurvival innode-negativebreastcancerpatients:NNBC,thenode-negative breast cancer trial.Ann.Oncol. doi:10.1093/annonc/mdt186 Klomp,D.W.,VanDeBank, B. L., Raaijmakers, A., Korteweg,M.A., Possanzini, C., Boer, V.O., et al. (2011). 31PMRSI and 1HMRS at 7 T: initial results in humanbreast cancer.NMRBiomed.24,1337–1342.doi:10.1002/nbm.1696 Knowles, S.M., andWu, A.M. (2012). Advances in immuno-positron emission tomography: antibodies formolecular imaging inoncology. J. Clin.Oncol.30, 3884–3892.doi:10.1200/JCO.2012.42.4887 Kondo, T. (2014). Inconvenient truth: cancer biomarker development by using proteomics.Biochim.Biophys.Acta1844, 861–865.doi: 10.1016/j.bbapap.2013. 07.009 Koolen, B. B., Vogel, W. V., Vrancken Peeters, M. J., Loo, C. E., Rutgers, E. J., and Valdes Olmos, R. A. (2012). Molecular imaging in breast cancer: from whole-body PET/CT to dedicated breast PET. J. Oncol. 2012, 438647. doi: 10.1155/2012/438647 Kuhl, C. (2007). The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice.Radiology244,356–378.doi:10.1148/radiol.2442051620 Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G., Granton, P., et al. (2012).Radiomics: extractingmore information frommed- ical images using advanced feature analysis. Eur. J. Cancer 48, 441–446. doi: 10.1016/j.ejca.2011.11.036 Lee,B.T.,Hutteman,M.,Gioux,S.,Stockdale,A.,Lin,S.J.,Ngo,L.H.,etal.(2010). The FLARE intraoperative near-infrared fluorescence imaging system: a first- in-humanclinical trial inperforatorflapbreast reconstruction.Plast. Reconstr. Surg.126,1472–1481.doi:10.1097/PRS.0b013e3181f059c7 Lerman, H., Lievshitz, G., Zak, O.,Metser, U., Schneebaum, S., and Even-Sapir, E. (2007). Improved sentinel node identification by SPECT/CT in overweight patientswithbreastcancer. J.Nucl.Med.48,201–206.Availabeonlineat:http:// jnm.snmjournals.org/content/48/2/201 Levi, J., Cheng, Z., Gheysens, O., Patel,M., Chan, C. T.,Wang, Y., et al. (2007). Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug. Chem.18,628–634.doi:10.1021/bc060184s Li, K., Wen, S., Larson, A. C., Shen, M., Zhang, Z., Chen, Q., et al. (2013). Multifunctionaldendrimer-basednanoparticles for invivoMR/CTdual-modal molecular imaging of breast cancer. Int. J. Nanomedicine 8, 2589–2600. doi: 10.2147/IJN.S46177 Li, Q., Gao, Q., and Zhang, G. (2014). Classification for breast cancer diag- nosis with Raman spectroscopy. Biomed. Opt. Express 5, 2435–2445. doi: 10.1364/BOE.5.002435 Liu,T.,Zhang, J.,Wang,X.,Yang, J.,Tang,Z., andLu, J. (2014).Radiolabeledglu- cosederivatives fortumorimagingusingSPECTandPET.Curr.Med.Chem.21, 24–34.doi:10.2174/09298673113209990254 www.frontiersin.org December2014 |Volume2 |Article112 |115
back to the  book Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Title
Cancer Nanotheranostics
Subtitle
What Have We Learnd So Far?
Authors
JoΓ£o Conde
Pedro Viana Baptista
JesΓΊs M. De La Fuente
Furong Tian
Editor
Frontiers in Chemistry
Date
2016
Language
English
License
CC BY 4.0
ISBN
978-2-88919-776-7
Size
21.0 x 27.7 cm
Pages
132
Keywords
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics