Page - 115 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 115 -
Text of the Page - 115 -
Alcantaraet al. Molecular imagingofbreast cancer
Coffey, J. P., andHill, J. C. (2010). Breast sentinel node imaging with low-dose
SPECT/CT. Nucl. Med. Commun. 31, 107β111. doi: 10.1097/MNM.0b013e3
2832ed3a6
Contractor, K. B., Kenny, L. M., Stebbing, J., Al-Nahhas, A., Palmieri, C.,
Sinnett, D., et al. (2009). [11C]choline positron emission tomography in
estrogen receptor-positive breast cancer.Clin. Cancer Res. 15, 5503β5510. doi:
10.1158/1078-0432.CCR-09-0666
DeMattos-Arruda, L., Cortes, J., Santarpia, L., Vivancos, A., Tabernero, J., Reis-
Filho, J.S., et al. (2013).Circulating tumourcells andcell-freeDNAas tools for
managingbreast cancer.Nat.Rev.Clin.Oncol.10, 377β389.doi: 10.1038/nrcli-
nonc.2013.80
Dβorsi,C.J.,andKopans,D.B.(1997).Mammographyinterpretation:theBI-RADS
method.Am.Fam.Physician55,1548β1550,1552.
Dromain, C., Balleyguier, C., Adler, G., Garbay, J. R., and Delaloge, S. (2009).
Contrast-enhanced digital mammography. Eur. J. Radiol. 69, 34β42. doi:
10.1016/j.ejrad.2008.07.035
Eccles, S. A., Aboagye, E.O., Ali, S., Anderson, A. S., Armes, J., Berditchevski, F.,
et al. (2013).Critical research gaps and translational priorities for the success-
ful prevention and treatment of breast cancer.BreastCancerRes.15,R92. doi:
10.1186/bcr3493
Ellenbroek, S. I. J., and Van Rheenen, J. (2014). Imaging hallmarks of cancer in
livingmice.Nat.Rev.Cancer14,406β418.doi:10.1038/nrc3742
Esposito,A.,Bardelli,A.,Criscitiello,C.,Colombo,N.,Gelao,L.,Fumagalli,L.,etal.
(2014).Monitoringtumor-derivedcell-freeDNAinpatientswithsolid tumors:
clinicalperspectivesandresearchopportunities.CancerTreat.Rev.40,648β655.
doi:10.1016/j.ctrv.2013.10.003
Fallenberg, E. M., Dromain, C., Diekmann, F., Renz, D. M., Amer, H., Ingold-
Heppner, B., et al. (2014). Contrast-enhanced spectral mammography: does
mammographyprovideadditionalclinicalbenefitsorcansomeradiationexpo-
sure be avoided?Breast Cancer Res. Treat. 146, 371β381. doi: 10.1007/s10549-
014-3023-6
Fleischhacker, M., and Schmidt, B. (2007). Circulating nucleic acids
(CNAs) and cancerβa survey. Biochim. Biophys. Acta 1775, 181β232. doi:
10.1016/j.bbcan.2006.10.001
Fornvik, D., Zackrisson, S., Ljungberg, O., Svahn, T., Timberg, P., Tingberg, A.,
et al. (2010).Breast tomosynthesis: accuracyof tumormeasurement compared
withdigitalmammographyandultrasonography.ActaRadiol.51,240β247.doi:
10.3109/02841850903524447
Gambini, J. P., Cabral, P., Alonso, O., Savio, E., Figueroa, S. D., Zhang, X.,
et al. (2011). Evaluation of 99mTc-glucarate as a breast cancer imaging
agent in a xenograft animal model. Nucl. Med. Biol. 38, 255β260. doi:
10.1016/j.nucmedbio.2010.08.002
Greaves, M., andMaley, C. C. (2012). Clonal evolution in cancer.Nature 481,
306β313.doi:10.1038/nature10762
Guo, Y., Cai, Y. Q., Cai, Z. L., Gao, Y. G., An, N. Y., Ma, L., et al.
(2002). Differentiation of clinically benign and malignant breast lesions
using diffusion-weighted imaging. J.Magn. Reson. Imaging 16, 172β178. doi:
10.1002/jmri.10140
Harbeck, N., Schmitt, M., Meisner, C., Friedel, C., Untch, M., Schmidt, M.,
et al. (2013). Ten-year analysis of the prospective multicentre Chemo-N0
trial validates American Society of Clinical Oncology (ASCO)-recommended
biomarkers uPA and PAI-1 for therapy decision making in node-negative
breast cancer patients. Eur. J. Cancer 49, 1825β1835. doi: 10.1016/j.ejca.2013.
01.007
Houssami, N., Given-Wilson, R., andCiatto, S. (2009). Early detection of breast
cancer: overviewof the evidenceoncomputer-aideddetection inmammogra-
physcreening. J.Med. ImagingRadiat.Oncol.53,171β176.doi:10.1111/j.1754-
9485.2009.02062.x
Huang,C.H., andTsourkas, A. (2013).Gd-basedmacromolecules andnanopar-
ticles asmagnetic resonance contrast agents formolecular imaging.Curr. Top.
Med.Chem.doi:10.2174/1568026611313040002
Husarik, D. B., and Steinert, H. C. (2007). Single-photon emission computed
tomography/computedtomographyforsentinelnodemappinginbreastcancer.
Semin.Nucl.Med.37,29β33.doi:10.1053/j.semnuclmed.2006.08.001
Itoh,A.,Ueno, E., Tohno, E., Kamma,H., Takahashi,H., Shiina, T., et al. (2006).
Breast disease: clinical applicationofUS elastography for diagnosis.Radiology
239,341β350.doi:10.1148/radiol.2391041676
Ittrich, H., Peldschus, K., Raabe, N., Kaul, M., and Adam, G. (2013).
Superparamagnetic ironoxide nanoparticles in biomedicine: applications and developments indiagnostics and therapy.Rofo185, 1149β1166.doi: 10.1055/s-
0033-1335438
Jia,W. R., Chai,W.M., Tang, L.,Wang, Y., Fei, X. C., Han, B. S., et al. (2014).
Three-dimensional contrast enhancedultrasoundscoreanddynamiccontrast-
enhancedmagnetic resonance imaging score inevaluatingbreast tumorangio-
genesis: correlationwith biological factors.Eur. J. Radiol. 83, 1098β1105. doi:
10.1016/j.ejrad.2014.03.027
Jin, R., Lin, B., Li, D., and Ai, H. (2014). Superparamagnetic iron oxide
nanoparticles forMR imaging and therapy: design considerations and clini-
cal applications.Curr.Opin. Pharmacol.18C, 18β27. doi: 10.1016/j.coph.2014.
08.002
Kallaway, C., Almond, L. M., Barr, H., Wood, J., Hutchings, J., Kendall, C.,
et al. (2013). Advances in the clinical application of Raman spectroscopy
for cancer diagnostics. Photodiagnosis Photodyn. Ther. 10, 207β219. doi:
10.1016/j.pdpdt.2013.01.008
Kalles, V., Zografos, G. C., Provatopoulou, X., Koulocheri, D., andGounaris, A.
(2013).Thecurrentstatusofpositronemissionmammographyinbreastcancer
diagnosis.BreastCancer20,123β130.doi:10.1007/s12282-012-0433-3
Kievit, F. M., and Zhang, M. (2011). Surface engineering of iron oxide
nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44, 853β862. doi:
10.1021/ar2000277
Kjaer, A. (2006).Molecular imaging of cancer using PET and SPECT.Adv. Exp.
Med.Biol.587,277β284.doi:10.1007/978-1-4020-5133-3_21
Klintman,M.,Nilsson,F.,Bendahl,P.-O.,FernΓΆ,M.,Liljegren,G.,Emdin,S., et al.
(2013).Aprospective,multicenter validation studyof aprognostic indexcom-
posed of S-phase fraction, progesterone receptor status, and tumour size pre-
dictssurvival innode-negativebreastcancerpatients:NNBC,thenode-negative
breast cancer trial.Ann.Oncol. doi:10.1093/annonc/mdt186
Klomp,D.W.,VanDeBank, B. L., Raaijmakers, A., Korteweg,M.A., Possanzini,
C., Boer, V.O., et al. (2011). 31PMRSI and 1HMRS at 7 T: initial results in
humanbreast cancer.NMRBiomed.24,1337β1342.doi:10.1002/nbm.1696
Knowles, S.M., andWu, A.M. (2012). Advances in immuno-positron emission
tomography: antibodies formolecular imaging inoncology. J. Clin.Oncol.30,
3884β3892.doi:10.1200/JCO.2012.42.4887
Kondo, T. (2014). Inconvenient truth: cancer biomarker development by using
proteomics.Biochim.Biophys.Acta1844, 861β865.doi: 10.1016/j.bbapap.2013.
07.009
Koolen, B. B., Vogel, W. V., Vrancken Peeters, M. J., Loo, C. E., Rutgers, E. J.,
and Valdes Olmos, R. A. (2012). Molecular imaging in breast cancer: from
whole-body PET/CT to dedicated breast PET. J. Oncol. 2012, 438647. doi:
10.1155/2012/438647
Kuhl, C. (2007). The current status of breast MR imaging. Part I. Choice of
technique, image interpretation, diagnostic accuracy, and transfer to clinical
practice.Radiology244,356β378.doi:10.1148/radiol.2442051620
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G.,
Granton, P., et al. (2012).Radiomics: extractingmore information frommed-
ical images using advanced feature analysis. Eur. J. Cancer 48, 441β446. doi:
10.1016/j.ejca.2011.11.036
Lee,B.T.,Hutteman,M.,Gioux,S.,Stockdale,A.,Lin,S.J.,Ngo,L.H.,etal.(2010).
The FLARE intraoperative near-infrared fluorescence imaging system: a first-
in-humanclinical trial inperforatorflapbreast reconstruction.Plast. Reconstr.
Surg.126,1472β1481.doi:10.1097/PRS.0b013e3181f059c7
Lerman, H., Lievshitz, G., Zak, O.,Metser, U., Schneebaum, S., and Even-Sapir,
E. (2007). Improved sentinel node identification by SPECT/CT in overweight
patientswithbreastcancer. J.Nucl.Med.48,201β206.Availabeonlineat:http://
jnm.snmjournals.org/content/48/2/201
Levi, J., Cheng, Z., Gheysens, O., Patel,M., Chan, C. T.,Wang, Y., et al. (2007).
Fluorescent fructose derivatives for imaging breast cancer cells. Bioconjug.
Chem.18,628β634.doi:10.1021/bc060184s
Li, K., Wen, S., Larson, A. C., Shen, M., Zhang, Z., Chen, Q., et al. (2013).
Multifunctionaldendrimer-basednanoparticles for invivoMR/CTdual-modal
molecular imaging of breast cancer. Int. J. Nanomedicine 8, 2589β2600. doi:
10.2147/IJN.S46177
Li, Q., Gao, Q., and Zhang, G. (2014). Classification for breast cancer diag-
nosis with Raman spectroscopy. Biomed. Opt. Express 5, 2435β2445. doi:
10.1364/BOE.5.002435
Liu,T.,Zhang, J.,Wang,X.,Yang, J.,Tang,Z., andLu, J. (2014).Radiolabeledglu-
cosederivatives fortumorimagingusingSPECTandPET.Curr.Med.Chem.21,
24β34.doi:10.2174/09298673113209990254
www.frontiersin.org December2014 |Volume2 |Article112 |115
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoΓ£o Conde
- Pedro Viana Baptista
- JesΓΊs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie