Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Seite - 127 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 127 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Bild der Seite - 127 -

Bild der Seite - 127 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text der Seite - 127 -

Liuet al. AuNS forcancer imagingand therapy References Ahmad, M. Z., Akhter, S., Jain, G. K., Rahman, M., Pathan, S. A., Ahmad, F. J., et al. (2010). Metallic nanoparticles: technology overview and drug delivery applications in oncology. Expert Opin. Drug Deliv. 7, 927–942. doi: 10.1517/17425247.2010.498473 Ahmadi, A., and Arami, S. (2014). Potential applications of nanoshells in biomedical sciences. J. Drug Target. 22, 175–190. doi: 10.3109/1061186X.2013.839684 Alak, A. M., and Vo-Dinh, T. (1987). Surface-enhanced Raman-spectrometry of organophosphorus chemical-agents. Anal. Chem. 59, 2149–2153. doi: 10.1021/ac00144a030 Alekseeva, A. V., Bogatyrev, V. A., Khlebtsov, B. N.,Mel’nikov, A. G., Dykman, L. A., and Khlebtsov, N. G. (2006). Gold nanorods: synthesis and optical properties.Colloid J.68,661–678.doi:10.1134/s1061933x06060019 Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1989). Titanium-dioxide based substrate foropticalmonitors in surface-enhancedRaman-scattering analysis. Anal.Chem.61,1779–1783.doi:10.1021/ac00190a600 Choi, K. Y., Liu, G., Lee, S., andChen, X. Y. (2012). Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives.Nanoscale4,330–342.doi:10.1039/C1NR11277E Chrastina, A., Massey, K. A., and Schnitzer, J. E. (2011). Overcoming in vivo barriers to targeted nanodelivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3,421–437.doi:10.1002/wnan.143 Day,E.S.,Thompson,P.A.,Zhang,L.N.,Lewinski,N.A.,Ahmed,N.,Drezek,R. A., et al. (2011).Nanoshell-mediatedphotothermal therapy improves survival inamurinegliomamodel. J.Neurooncol.104,55–63.doi:10.1007/s11060-010- 0470-8 Enlow, P. D., Buncick,M.,Warmack, R. J., and Vo-Dinh, T. (1986). Detection of nitro polynuclear aromatic-compounds by surface-enhanced Raman- spectrometry.Anal.Chem.58,1119–1123.doi:10.1021/ac00297a031 Fales,A.M.,Yuan,H.K., andVo-Dinh,T. (2014).Developmentofhybrid silver- coated goldnanostars for nonaggregated surface-enhancedRaman scattering. J.Phys.Chem.C118,3708–3715.doi:10.1021/jp4091393 Fales, A.M., Yuan,H., andVo-Dinh, T. (2011). Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet- oxygen generation: a potential nanoplatform for theranostics. Langmuir 27, 12186–12190.doi:10.1021/la202602q Fales,A.M.,Yuan,H.,andVo-Dinh,T.(2013).Cell-penetratingpeptideenhanced intracellular Raman imaging and photodynamic therapy.Mol. Pharm. 10, 2291–2298.doi:10.1021/mp300634b Ferlay, J., Shin,H.R.,Bray,F.,Forman,D.,Mathers,C., andParkin,D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN2008. Int. J. Cancer127,2893–2917.doi:10.1002/ijc.25516 Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57. doi: 10.1016/j.nbd.2009.07.028 Gad,S.C.,Sharp,K.L.,Montgomery,C.,Payne, J.D., andGoodrich,G.P. (2012). Evaluation of the toxicity of intravenous delivery of auroshell particles (gold- silicananoshells). Int. J.Toxicol.31,584–594.doi:10.1177/1091581812465969 Gao, N., Chen, Y., Li, L., Guan, Z., Zhao, T., Zhou, N., et al. (2014). Shape- dependenttwo-photonphotoluminescenceofsinglegoldnanoparticles.J.Phys. Chem.C118,13904–13911.doi:10.1021/jp502038v Goldberg,M. S.,Hook, S. S.,Wang,A.Z., Bulte, J.W.M., Patri,A.K.,Uckun, F. M., et al. (2013). Biotargeted nanomedicines for cancer: six tenets before you begin.Nanomedicine8,299–308.doi:10.2217/nnm.13.3 Harmsen, S., Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero, M., et al. (2015). Surface-enhanced resonanceRaman scatteringnanostars for high-precision cancer imaging. Sci. Transl. Med. 7, 271ra277–271ra277. doi: 10.1126/scitranslmed.3010633 Huang,X.,andEl-Sayed,M.A.(2011).Plasmonicphoto-thermal therapy(PPTT). Alex. J.Med.47,1–9.doi:10.1016/j.ajme.2011.01.001 Huschka, R., Barhoumi, A., Liu, Q., Roth, J. A., Ji, L., and Halas, N. J. (2012).Genesilencingbygoldnanoshell-mediateddeliveryandlaser-triggered release of antisense oligonucleotide and siRNA.ACSNano 6, 7681–7691. doi: 10.1021/nn301135w Jemal,A.,Siegel,R.,Xu, J., andWard,E.(2010).Cancerstatistics,2010.CACancer J.Clin.60,277–300.doi:10.3322/caac.20073 Khlebtsov,N., andDykman,L. (2011).Biodistributionand toxicity of engineered goldnanoparticles: a reviewof invitroand in vivo studies.Chem.Soc.Rev.40, 1647–1671.doi:10.1039/C0CS00018C Kim, C., Song, H.M., Cai, X., Yao, J. J., Wei, A., andWang, L. H. V. (2011a). In vivo photoacousticmapping of lymphatic systemswith plasmon-resonant nanostars. J.Mater.Chem.21,2841–2844.doi:10.1039/c0jm04194g Kim, Y. H., Jeon, J., Hong, S. H., Rhim, W. K., Lee, Y. S., Youn, H., et al. (2011b). Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probeswith directly conjugated iodine-125. Small 7, 2052–2060. doi:10.1002/smll.201100927 Koffie, R. M., Farrar, C. T., Saidi, L.-J., William, C. M., Hyman, B. T., and Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 108, 18837–18842. doi: 10.1073/pnas.1111405108 Lee,J.,Chatterjee,D.K.,Lee,M.H.,andKrishnan,S.(2014).Goldnanoparticles in breastcancertreatment:promiseandpotentialpitfalls.CancerLett.347,46–53. doi:10.1016/j.canlet.2014.02.006 Liu, Y., Ashton, J. R., Moding, E. J., Yuan, H., Register, J. K., Fales, A. M., et al. (2015a). A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 5, 946–960. doi: 10.7150/thno.11974 Liu, Y., Chang, Z., Yuan,H., Fales, A.M., andVo-Dinh, T. (2013a). Quintuple- modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale5,12126–12131.doi:10.1039/c3nr03762b Liu, Y., and Sun, H. (2011). Electronic ground states and vibrational frequency shifts of diatomic ligands in heme adducts. J. Comput. Chem. 32, 1279–1285. doi:10.1002/jcc.21709 Liu, Y., Yuan, H., Fales, A.M., and Vo-Dinh, T. (2013b). pH-sensing nanostar probe using surface-enhanced Raman scattering (SERS): theoretical and experimental studies. J.RamanSpectrosc.44,980–986.doi:10.1002/jrs.4302 Liu, Y., Yuan, H., Kersey, F., Register, J., Parrott,M., andVo-Dinh, T. (2015b). Plasmonic goldnanostars formulti-modality sensing anddiagnostics. Sensors 15,3706–3720.doi:10.3390/s150203706 Liu,Y.,Yuan,H., andVo-Dinh,T. (2013c).Spectroscopicandvibrationalanalysis of the methoxypsoralen system: a comparative experimental and theoretical study. J.Mol.Struct.1035,13–18.doi:10.1016/j.molstruc.2012.08.047 Loo, C., Lin, A., Hirsch, L., Lee, M. H., Barton, J., Halas, N. J., et al. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer.Technol. CancerRes.Treat.3,33–40.doi:10.1177/153303460400300104 Maeda,H.(2001).“Theenhancedpermeabilityandretention(EPR)effectintumor vasculature: the key role of tumor-selectivemacromolecular drug targeting,” inAdvances in EnzymeRegulation, edG.Weber (Tarrytown,NY;Kidlington: ElsevierScienceInc.),189–207. Maeda,H., Fang, J., Inutsuka,T., andKitamoto,Y. (2003).Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int. Immunopharmacol. 3, 319–328. doi: 10.1016/S1567- 5769(02)00271-0 Maeda,H.,Sawa,T.,andKonno,T.(2001).Mechanismoftumor-targeteddelivery ofmacromoleculardrugs, including theEPReffect in solid tumorandclinical overview of the prototype polymeric drug SMANCS. J. Control. Release 74, 47–61.doi:10.1016/S0168-3659(01)00309-1 Meier, M., Wokaun, A., and Vo-Dinh, T. (1985). Silver particles on stochastic quartz substrates providing tenfold increase inRaman enhancement. J. Phys. Chem.89,1843–1846.doi:10.1021/j100256a002 Misawa, M., and Takahashi, J. (2011). Generation of reactive oxygen species inducedbygoldnanoparticlesunderx-rayandUVIrradiations.Nanomedicine 7,604–614.doi:10.1016/j.nano.2011.01.014 Popovic, Z., Liu, W., Chauhan, V. P., Lee, J., Wong, C., Greytak, A. B., et al. (2010). A nanoparticle size series for in vivo fluorescence imaging.Angew. Chem. Int. Ed. Engl. 49, 8649–8652. doi: 10.1002/anie.2010 03142 Pustovalov, V. K., Smetannikov, A. S., and Zharov, V. P. (2008). Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys. Lett. 5, 775–792. doi: 10.1002/lapl.200810072 Ramachandran, G. K., Hopson, T. J., Rawlett, A. M., Nagahara, L. A., Primak, A., and Lindsay, S. M. (2003). A bond-fluctuation mechanism Frontiers inChemistry |www.frontiersin.org August2015 |Volume3 |Article51 127|
zurĂĽck zum  Buch Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Titel
Cancer Nanotheranostics
Untertitel
What Have We Learnd So Far?
Autoren
JoĂŁo Conde
Pedro Viana Baptista
JesĂşs M. De La Fuente
Furong Tian
Herausgeber
Frontiers in Chemistry
Datum
2016
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-2-88919-776-7
Abmessungen
21.0 x 27.7 cm
Seiten
132
Schlagwörter
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Kategorien
Naturwissenschaften Chemie
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics