Page - 127 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 127 -
Text of the Page - 127 -
Liuet al. AuNS forcancer imagingand therapy
References
Ahmad, M. Z., Akhter, S., Jain, G. K., Rahman, M., Pathan, S. A., Ahmad,
F. J., et al. (2010). Metallic nanoparticles: technology overview and drug
delivery applications in oncology. Expert Opin. Drug Deliv. 7, 927–942. doi:
10.1517/17425247.2010.498473
Ahmadi, A., and Arami, S. (2014). Potential applications of
nanoshells in biomedical sciences. J. Drug Target. 22, 175–190. doi:
10.3109/1061186X.2013.839684
Alak, A. M., and Vo-Dinh, T. (1987). Surface-enhanced Raman-spectrometry
of organophosphorus chemical-agents. Anal. Chem. 59, 2149–2153. doi:
10.1021/ac00144a030
Alekseeva, A. V., Bogatyrev, V. A., Khlebtsov, B. N.,Mel’nikov, A. G., Dykman,
L. A., and Khlebtsov, N. G. (2006). Gold nanorods: synthesis and optical
properties.Colloid J.68,661–678.doi:10.1134/s1061933x06060019
Bello, J. M., Stokes, D. L., and Vo-Dinh, T. (1989). Titanium-dioxide based
substrate foropticalmonitors in surface-enhancedRaman-scattering analysis.
Anal.Chem.61,1779–1783.doi:10.1021/ac00190a600
Choi, K. Y., Liu, G., Lee, S., andChen, X. Y. (2012). Theranostic nanoplatforms
for simultaneous cancer imaging and therapy: current approaches and future
perspectives.Nanoscale4,330–342.doi:10.1039/C1NR11277E
Chrastina, A., Massey, K. A., and Schnitzer, J. E. (2011). Overcoming
in vivo barriers to targeted nanodelivery.Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol.3,421–437.doi:10.1002/wnan.143
Day,E.S.,Thompson,P.A.,Zhang,L.N.,Lewinski,N.A.,Ahmed,N.,Drezek,R.
A., et al. (2011).Nanoshell-mediatedphotothermal therapy improves survival
inamurinegliomamodel. J.Neurooncol.104,55–63.doi:10.1007/s11060-010-
0470-8
Enlow, P. D., Buncick,M.,Warmack, R. J., and Vo-Dinh, T. (1986). Detection
of nitro polynuclear aromatic-compounds by surface-enhanced Raman-
spectrometry.Anal.Chem.58,1119–1123.doi:10.1021/ac00297a031
Fales,A.M.,Yuan,H.K., andVo-Dinh,T. (2014).Developmentofhybrid silver-
coated goldnanostars for nonaggregated surface-enhancedRaman scattering.
J.Phys.Chem.C118,3708–3715.doi:10.1021/jp4091393
Fales, A.M., Yuan,H., andVo-Dinh, T. (2011). Silica-coated gold nanostars for
combined surface-enhanced Raman scattering (SERS) detection and singlet-
oxygen generation: a potential nanoplatform for theranostics. Langmuir 27,
12186–12190.doi:10.1021/la202602q
Fales,A.M.,Yuan,H.,andVo-Dinh,T.(2013).Cell-penetratingpeptideenhanced
intracellular Raman imaging and photodynamic therapy.Mol. Pharm. 10,
2291–2298.doi:10.1021/mp300634b
Ferlay, J., Shin,H.R.,Bray,F.,Forman,D.,Mathers,C., andParkin,D.M. (2010).
Estimates of worldwide burden of cancer in 2008: GLOBOCAN2008. Int. J.
Cancer127,2893–2917.doi:10.1002/ijc.25516
Gabathuler, R. (2010). Approaches to transport therapeutic drugs across the
blood-brain barrier to treat brain diseases. Neurobiol. Dis. 37, 48–57. doi:
10.1016/j.nbd.2009.07.028
Gad,S.C.,Sharp,K.L.,Montgomery,C.,Payne, J.D., andGoodrich,G.P. (2012).
Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-
silicananoshells). Int. J.Toxicol.31,584–594.doi:10.1177/1091581812465969
Gao, N., Chen, Y., Li, L., Guan, Z., Zhao, T., Zhou, N., et al. (2014). Shape-
dependenttwo-photonphotoluminescenceofsinglegoldnanoparticles.J.Phys.
Chem.C118,13904–13911.doi:10.1021/jp502038v
Goldberg,M. S.,Hook, S. S.,Wang,A.Z., Bulte, J.W.M., Patri,A.K.,Uckun, F.
M., et al. (2013). Biotargeted nanomedicines for cancer: six tenets before you
begin.Nanomedicine8,299–308.doi:10.2217/nnm.13.3
Harmsen, S., Huang, R., Wall, M. A., Karabeber, H., Samii, J. M., Spaliviero,
M., et al. (2015). Surface-enhanced resonanceRaman scatteringnanostars for
high-precision cancer imaging. Sci. Transl. Med. 7, 271ra277–271ra277. doi:
10.1126/scitranslmed.3010633
Huang,X.,andEl-Sayed,M.A.(2011).Plasmonicphoto-thermal therapy(PPTT).
Alex. J.Med.47,1–9.doi:10.1016/j.ajme.2011.01.001
Huschka, R., Barhoumi, A., Liu, Q., Roth, J. A., Ji, L., and Halas, N. J.
(2012).Genesilencingbygoldnanoshell-mediateddeliveryandlaser-triggered
release of antisense oligonucleotide and siRNA.ACSNano 6, 7681–7691. doi:
10.1021/nn301135w
Jemal,A.,Siegel,R.,Xu, J., andWard,E.(2010).Cancerstatistics,2010.CACancer
J.Clin.60,277–300.doi:10.3322/caac.20073 Khlebtsov,N., andDykman,L. (2011).Biodistributionand toxicity of engineered
goldnanoparticles: a reviewof invitroand in vivo studies.Chem.Soc.Rev.40,
1647–1671.doi:10.1039/C0CS00018C
Kim, C., Song, H.M., Cai, X., Yao, J. J., Wei, A., andWang, L. H. V. (2011a).
In vivo photoacousticmapping of lymphatic systemswith plasmon-resonant
nanostars. J.Mater.Chem.21,2841–2844.doi:10.1039/c0jm04194g
Kim, Y. H., Jeon, J., Hong, S. H., Rhim, W. K., Lee, Y. S., Youn, H., et al.
(2011b). Tumor targeting and imaging using cyclic RGD-PEGylated gold
nanoparticle probeswith directly conjugated iodine-125. Small 7, 2052–2060.
doi:10.1002/smll.201100927
Koffie, R. M., Farrar, C. T., Saidi, L.-J., William, C. M., Hyman, B. T.,
and Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of
blood-brain barrier-impermeable probes for in vivo optical and magnetic
resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 108, 18837–18842. doi:
10.1073/pnas.1111405108
Lee,J.,Chatterjee,D.K.,Lee,M.H.,andKrishnan,S.(2014).Goldnanoparticles in
breastcancertreatment:promiseandpotentialpitfalls.CancerLett.347,46–53.
doi:10.1016/j.canlet.2014.02.006
Liu, Y., Ashton, J. R., Moding, E. J., Yuan, H., Register, J. K., Fales, A. M.,
et al. (2015a). A plasmonic gold nanostar theranostic probe for in vivo
tumor imaging and photothermal therapy. Theranostics 5, 946–960. doi:
10.7150/thno.11974
Liu, Y., Chang, Z., Yuan,H., Fales, A.M., andVo-Dinh, T. (2013a). Quintuple-
modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics.
Nanoscale5,12126–12131.doi:10.1039/c3nr03762b
Liu, Y., and Sun, H. (2011). Electronic ground states and vibrational frequency
shifts of diatomic ligands in heme adducts. J. Comput. Chem. 32, 1279–1285.
doi:10.1002/jcc.21709
Liu, Y., Yuan, H., Fales, A.M., and Vo-Dinh, T. (2013b). pH-sensing nanostar
probe using surface-enhanced Raman scattering (SERS): theoretical and
experimental studies. J.RamanSpectrosc.44,980–986.doi:10.1002/jrs.4302
Liu, Y., Yuan, H., Kersey, F., Register, J., Parrott,M., andVo-Dinh, T. (2015b).
Plasmonic goldnanostars formulti-modality sensing anddiagnostics. Sensors
15,3706–3720.doi:10.3390/s150203706
Liu,Y.,Yuan,H., andVo-Dinh,T. (2013c).Spectroscopicandvibrationalanalysis
of the methoxypsoralen system: a comparative experimental and theoretical
study. J.Mol.Struct.1035,13–18.doi:10.1016/j.molstruc.2012.08.047
Loo, C., Lin, A., Hirsch, L., Lee, M. H., Barton, J., Halas, N. J., et al. (2004).
Nanoshell-enabled photonics-based imaging and therapy of cancer.Technol.
CancerRes.Treat.3,33–40.doi:10.1177/153303460400300104
Maeda,H.(2001).“Theenhancedpermeabilityandretention(EPR)effectintumor
vasculature: the key role of tumor-selectivemacromolecular drug targeting,”
inAdvances in EnzymeRegulation, edG.Weber (Tarrytown,NY;Kidlington:
ElsevierScienceInc.),189–207.
Maeda,H., Fang, J., Inutsuka,T., andKitamoto,Y. (2003).Vascular permeability
enhancement in solid tumor: various factors, mechanisms involved and
its implications. Int. Immunopharmacol. 3, 319–328. doi: 10.1016/S1567-
5769(02)00271-0
Maeda,H.,Sawa,T.,andKonno,T.(2001).Mechanismoftumor-targeteddelivery
ofmacromoleculardrugs, including theEPReffect in solid tumorandclinical
overview of the prototype polymeric drug SMANCS. J. Control. Release 74,
47–61.doi:10.1016/S0168-3659(01)00309-1
Meier, M., Wokaun, A., and Vo-Dinh, T. (1985). Silver particles on stochastic
quartz substrates providing tenfold increase inRaman enhancement. J. Phys.
Chem.89,1843–1846.doi:10.1021/j100256a002
Misawa, M., and Takahashi, J. (2011). Generation of reactive oxygen species
inducedbygoldnanoparticlesunderx-rayandUVIrradiations.Nanomedicine
7,604–614.doi:10.1016/j.nano.2011.01.014
Popovic, Z., Liu, W., Chauhan, V. P., Lee, J., Wong, C., Greytak, A.
B., et al. (2010). A nanoparticle size series for in vivo fluorescence
imaging.Angew. Chem. Int. Ed. Engl. 49, 8649–8652. doi: 10.1002/anie.2010
03142
Pustovalov, V. K., Smetannikov, A. S., and Zharov, V. P. (2008). Photothermal
and accompanied phenomena of selective nanophotothermolysis with
gold nanoparticles and laser pulses. Laser Phys. Lett. 5, 775–792. doi:
10.1002/lapl.200810072
Ramachandran, G. K., Hopson, T. J., Rawlett, A. M., Nagahara, L. A.,
Primak, A., and Lindsay, S. M. (2003). A bond-fluctuation mechanism
Frontiers inChemistry |www.frontiersin.org August2015 |Volume3 |Article51 127|
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie