Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Seite - 59 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 59 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Bild der Seite - 59 -

Bild der Seite - 59 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources

Text der Seite - 59 -

3.2. Grey-boxModeling • ExponentiallyWeightedRecursiveLeastSquares (RLS) The exponentially weighted recursive least squares (RLS) algo- rithm is one of the most used algorithms in adaptive filtering and system identification [Li08], for tracking time-varying parameters. Given all observations ( Yn(i),Πn(i) ) from the beginning (i= 1) to the current time (i= k), the cost functionJRLS(k) of the expo- nentiallyweightedRLSisdefinedas [Lju98] JRLS(k) = 1 k−1 k∑ i=2 λk−i ( Ynr (i)−θne(i−1)Πn(i−1) )2 , (3.55) whereλ isa forgettingfactorwith0<λ≤1. Acost function is the functiondefinedto beminimized. Themini- mizationof thecost functionleadstotheoptimalcoefficientvector θne , suchas θne(k−1) = argθminJRLS(k). (3.56) Theinvolvementofλ indicatesthattheabovecostfunctionassigns more credits to recent data than old data, endowing the exponen- tially weighted RLS the ability of tracking time-varying systems. Thesmallerλ is, the faster it forgetsolddata. The detailed derivation process of the estimation θne(k) can be found in [WP97]. The final update equations of the exponentially weightedRLSwithk≥2aregivenas [Pol03] Kn(k−1) = [Pne(k−2)]Π(k−1) [ λσ2 +ΠT(k−1)[Pne(k−2)]Π(k−1) ]−1 , θne(k−1) = θne(k−2)+Kn(k−1) [ Ynr (k)−Yne (k) ] , [Pne(k−1)] = 1 λ [ 1−Kn(k−1)Π(k−1)][Pne(k−2)] . (3.57) In practice, the vector θne(0) is randomly initialized. and the co- variance matrix [Pne ] is initialized as [Pne(0)] = r [I1+M], wherer is arealnumber[Lju98]. Thevalueofrdenotesthelevelof theinitial estimationerror. Forexample,alarger indicatesalargeestimation 59
zurück zum  Buch Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Titel
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Autor
Yiming Sun
Verlag
KIT Scientific Publishing
Ort
Karlsruhe
Datum
2016
Sprache
englisch
Lizenz
CC BY-SA 3.0
ISBN
978-3-7315-0467-2
Abmessungen
14.8 x 21.0 cm
Seiten
260
Schlagwörter
Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources