Seite - 59 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Bild der Seite - 59 -
Text der Seite - 59 -
3.2. Grey-boxModeling
• ExponentiallyWeightedRecursiveLeastSquares (RLS)
The exponentially weighted recursive least squares (RLS) algo-
rithm is one of the most used algorithms in adaptive filtering and
system identification [Li08], for tracking time-varying parameters.
Given all observations (
Yn(i),Πn(i) )
from the beginning (i= 1)
to the current time (i= k), the cost functionJRLS(k) of the expo-
nentiallyweightedRLSisdefinedas [Lju98]
JRLS(k) = 1
k−1 k∑
i=2 λk−i (
Ynr (i)−θne(i−1)Πn(i−1) )2
, (3.55)
whereλ isa forgettingfactorwith0<λ≤1.
Acost function is the functiondefinedto beminimized. Themini-
mizationof thecost functionleadstotheoptimalcoefficientvector
θne , suchas
θne(k−1) = argθminJRLS(k). (3.56)
Theinvolvementofλ indicatesthattheabovecostfunctionassigns
more credits to recent data than old data, endowing the exponen-
tially weighted RLS the ability of tracking time-varying systems.
Thesmallerλ is, the faster it forgetsolddata.
The detailed derivation process of the estimation θne(k) can be
found in [WP97]. The final update equations of the exponentially
weightedRLSwithk≥2aregivenas [Pol03]
Kn(k−1) = [Pne(k−2)]Π(k−1) [
λσ2
+ΠT(k−1)[Pne(k−2)]Π(k−1) ]−1
,
θne(k−1) = θne(k−2)+Kn(k−1)
[
Ynr (k)−Yne (k)
]
,
[Pne(k−1)] = 1
λ [ 1−Kn(k−1)Π(k−1)][Pne(k−2)] .
(3.57)
In practice, the vector θne(0) is randomly initialized. and the co-
variance matrix [Pne ] is initialized as [Pne(0)] = r [I1+M], wherer is
arealnumber[Lju98]. Thevalueofrdenotesthelevelof theinitial
estimationerror. Forexample,alarger indicatesalargeestimation
59
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Titel
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Autor
- Yiming Sun
- Verlag
- KIT Scientific Publishing
- Ort
- Karlsruhe
- Datum
- 2016
- Sprache
- englisch
- Lizenz
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Abmessungen
- 14.8 x 21.0 cm
- Seiten
- 260
- Schlagwörter
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Kategorie
- Technik