Page - 59 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 59 -
Text of the Page - 59 -
3.2. Grey-boxModeling
• ExponentiallyWeightedRecursiveLeastSquares (RLS)
The exponentially weighted recursive least squares (RLS) algo-
rithm is one of the most used algorithms in adaptive filtering and
system identification [Li08], for tracking time-varying parameters.
Given all observations (
Yn(i),Î n(i) )
from the beginning (i= 1)
to the current time (i= k), the cost functionJRLS(k) of the expo-
nentiallyweightedRLSisdefinedas [Lju98]
JRLS(k) = 1
k−1 k∑
i=2 λk−i (
Ynr (i)−θne(i−1)Πn(i−1) )2
, (3.55)
whereλ isa forgettingfactorwith0<λ≤1.
Acost function is the functiondefinedto beminimized. Themini-
mizationof thecost functionleadstotheoptimalcoefficientvector
θne , suchas
θne(k−1) = argθminJRLS(k). (3.56)
Theinvolvementofλ indicatesthattheabovecostfunctionassigns
more credits to recent data than old data, endowing the exponen-
tially weighted RLS the ability of tracking time-varying systems.
Thesmallerλ is, the faster it forgetsolddata.
The detailed derivation process of the estimation θne(k) can be
found in [WP97]. The final update equations of the exponentially
weightedRLSwithk≥2aregivenas [Pol03]
Kn(k−1) = [Pne(k−2)]Π(k−1) [
λσ2
+ΠT(k−1)[Pne(k−2)]Π(k−1) ]−1
,
θne(k−1) = θne(k−2)+Kn(k−1)
[
Ynr (k)−Yne (k)
]
,
[Pne(k−1)] = 1
λ [ 1−Kn(k−1)Π(k−1)][Pne(k−2)] .
(3.57)
In practice, the vector θne(0) is randomly initialized. and the co-
variance matrix [Pne ] is initialized as [Pne(0)] = r [I1+M], wherer is
arealnumber[Lju98]. Thevalueofrdenotesthelevelof theinitial
estimationerror. Forexample,alarger indicatesalargeestimation
59
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik