Seite - 6 - in Document Image Processing
Bild der Seite - 6 -
Text der Seite - 6 -
J. Imaging 2018,4, 68
wecommentonasetofexperimental results, illustratingtheperformanceof theproposedmethodand
itscomparisonwithstate-of-the-artmethods. Theconcludingremarksaregiven inSection6.
2. SparseImageRepresentation
Recently, sparse representation emerged as a powerful tool for efïŹcient representation and
processing of high-dimensional data. In particular, sparsity based regularization has achieved
great success, offering solutions that outperformclassical approaches invarious imageandsignal
processingapplications.Amongtheothers,wecanmentioninverseproblemssuchasdenoising[35,36],
reconstruction[22,37], classiïŹcation[38], recognition[39,40], andcompression[41,42]. Theunderlying
assumptionofmethodsbasedonsparserepresentation is thatsignalssuchasaudioandimagesare
naturallygeneratedbyamultivariate linearmodel,drivenbyasmallnumberofbasisorregressors.
The basis set, called dictionary, is either ïŹxed andpredeïŹned, i.e., Fourier,Wavelet, Cosine, etc.,
oradaptively learnedfromatrainingset [43].While theunderlyingkeyconstraintofall thesemethods
is that theobservedsignal is sparse, explicitlymeaningthat it canbeadequatelyrepresentedusing
asmall setofdictionaryatoms, theparticularityof thosebasedonadaptivedictionaries is that the
dictionary isalso learnedtoïŹndtheonethatbestdescribes theobservedsignal.
Given a data set Y = [y1,y2,...,yN] â RnĂN, its sparse representation consists of learning
anovercompletedictionary,DâRnĂK,N>K>n, andasparsecoefïŹcientmatrix,XâRKĂNwith
non-zeroelements less thann , suchthatyiâDxi, bysolvingtheoptimizationproblemgivenas
min
D,X ||YâDX||2F s.t. âxi âpâ€m,
where thexi are the columnvectorsofX,m is thedesired sparsity level, andâ · âp is the p-norm,
with0†pâ€1.
Mostof thesemethodsconsistofa twostageoptimizationscheme: sparsecodinganddictionary
update [43]. In theïŹrst stage, thesparsityconstraint isusedtoproduceasparse linearapproximation
of theobserveddata,withrespect to thecurrentdictionaryD. Findingtheexact sparseapproximation
isanNP-hard(non-deterministicpolynomial-timehard)problem[44],butusingapproximatesolutions
hasproventobeagoodcompromise.CommonlyusedsparseapproximationalgorithmsareMatching
Pursuit (MP) [45], Basis Pursuits (BP) [46], FocalUnderdeterminedSystemSolver (FOCUSS) [47],
andOrthogonalMatchingPursuit (OMP)[48]. In thesecondstage,basedonthecurrentsparsecode,
thedictionary isupdatedtominimizeacost function.Differentcost functionshavebeenusedfor the
dictionaryupdate, forexample, theFrobeniusnormwithcolumnnormalizationhasbeenwidelyused.
Sparserepresentationmethods iteratebetweenthesparsecodingstageandthedictionaryupdatestage
until convergence. Theperformanceof thesemethods stronglydependson thedictionaryupdate
stage, sincemostof themshareasimilarsparsecoding[43].
Asper thedictionary that leads to sparsedecomposition, althoughworkingwithpre-deïŹned
dictionariesmaybesimpleandfast, theirperformancemightbenotgoodforevery task,dueto their
global-adaptivitynature [49]. Instead, learneddictionariesareadaptive toboth thesignalsandthe
processingtaskathand, thusresulting ina farbetterperformance [50].
Foragivensetof signalsY,dictionary learningalgorithmsgeneratearepresentationofsignalyi
asasparse linearcombinationof theatomsdk fork=1,...,K,
yËi=Dxi. (1)
Dictionary learningalgorithmsdistinguish themselves fromtraditionalmodel-basedmethodsby
the fact that, inadditiontoxi, theyalso train thedictionaryD tobetterïŹt thedatasetY. Thesolution
isgeneratedbyiterativelyalternatingbetweenthesparsecodingstage,
xËi=argminxi âyiâDxi â2; subject toâxi â0â€m (2)
6
zurĂŒck zum
Buch Document Image Processing"