Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 6 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 6 - in Document Image Processing

Image of the Page - 6 -

Image of the Page - 6 - in Document Image Processing

Text of the Page - 6 -

J. Imaging 2018,4, 68 wecommentonasetofexperimental results, illustratingtheperformanceof theproposedmethodand itscomparisonwithstate-of-the-artmethods. Theconcludingremarksaregiven inSection6. 2. SparseImageRepresentation Recently, sparse representation emerged as a powerful tool for efficient representation and processing of high-dimensional data. In particular, sparsity based regularization has achieved great success, offering solutions that outperformclassical approaches invarious imageandsignal processingapplications.Amongtheothers,wecanmentioninverseproblemssuchasdenoising[35,36], reconstruction[22,37], classification[38], recognition[39,40], andcompression[41,42]. Theunderlying assumptionofmethodsbasedonsparserepresentation is thatsignalssuchasaudioandimagesare naturallygeneratedbyamultivariate linearmodel,drivenbyasmallnumberofbasisorregressors. The basis set, called dictionary, is either fixed andpredefined, i.e., Fourier,Wavelet, Cosine, etc., oradaptively learnedfromatrainingset [43].While theunderlyingkeyconstraintofall thesemethods is that theobservedsignal is sparse, explicitlymeaningthat it canbeadequatelyrepresentedusing asmall setofdictionaryatoms, theparticularityof thosebasedonadaptivedictionaries is that the dictionary isalso learnedtofindtheonethatbestdescribes theobservedsignal. Given a data set Y = [y1,y2,...,yN] ∈ Rn×N, its sparse representation consists of learning anovercompletedictionary,D∈Rn×K,N>K>n, andasparsecoefficientmatrix,X∈RK×Nwith non-zeroelements less thann , suchthatyi≈Dxi, bysolvingtheoptimizationproblemgivenas min D,X ||Y−DX||2F s.t. ‖xi ‖p≤m, where thexi are the columnvectorsofX,m is thedesired sparsity level, and‖ · ‖p is the p-norm, with0≤ p≤1. Mostof thesemethodsconsistofa twostageoptimizationscheme: sparsecodinganddictionary update [43]. In thefirst stage, thesparsityconstraint isusedtoproduceasparse linearapproximation of theobserveddata,withrespect to thecurrentdictionaryD. Findingtheexact sparseapproximation isanNP-hard(non-deterministicpolynomial-timehard)problem[44],butusingapproximatesolutions hasproventobeagoodcompromise.CommonlyusedsparseapproximationalgorithmsareMatching Pursuit (MP) [45], Basis Pursuits (BP) [46], FocalUnderdeterminedSystemSolver (FOCUSS) [47], andOrthogonalMatchingPursuit (OMP)[48]. In thesecondstage,basedonthecurrentsparsecode, thedictionary isupdatedtominimizeacost function.Differentcost functionshavebeenusedfor the dictionaryupdate, forexample, theFrobeniusnormwithcolumnnormalizationhasbeenwidelyused. Sparserepresentationmethods iteratebetweenthesparsecodingstageandthedictionaryupdatestage until convergence. Theperformanceof thesemethods stronglydependson thedictionaryupdate stage, sincemostof themshareasimilarsparsecoding[43]. Asper thedictionary that leads to sparsedecomposition, althoughworkingwithpre-defined dictionariesmaybesimpleandfast, theirperformancemightbenotgoodforevery task,dueto their global-adaptivitynature [49]. Instead, learneddictionariesareadaptive toboth thesignalsandthe processingtaskathand, thusresulting ina farbetterperformance [50]. Foragivensetof signalsY,dictionary learningalgorithmsgeneratearepresentationofsignalyi asasparse linearcombinationof theatomsdk fork=1,...,K, yˆi=Dxi. (1) Dictionary learningalgorithmsdistinguish themselves fromtraditionalmodel-basedmethodsby the fact that, inadditiontoxi, theyalso train thedictionaryD tobetterfit thedatasetY. Thesolution isgeneratedbyiterativelyalternatingbetweenthesparsecodingstage, xˆi=argminxi ‖yi−Dxi ‖2; subject to‖xi ‖0≤m (2) 6
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing