Seite - 53 - in Document Image Processing
Bild der Seite - 53 -
Text der Seite - 53 -
J. Imaging 2018,4, 57
areperformedtochoose theoptimalvalueof th. In thiswork,Weka3 [28], adataminingsoftware
(UniversityofWaikato,Hamilton,NewZealand),hasbeenusedforclassificationandvisualization
purpose. Thevaluesof theclassifiers’parametersused in thecurrentexperimentaregiven inTable1.
Table1.Detailvaluesof theparametersusedbytheclassifiersunderconsideration.
Classifier ParameterswithValues
NB •Batchsize:
100•Normaldistributionfornumericattributes
MLP •LearningRate for thebackpropagationalgorithm: 0.3
•MomentumRate: 0.2
•Numberofepochs to train through: 500
•LearningRate: 0.3
SMO •ComplexityconstantC:1
•ToleranceParameter: 1.0×10−3
•Epsilonforround-offerror: 1.0×10−12
•Therandomnumberseed: 1
K-NN •K:1•Batchsize: 100
RF •Batchsize: 100
•Minimumnumberof instancesper leaf: 1
•Minimumnumericclassvarianceproportionof trainvariance forsplit: 1.0×10−3
•Themaximumdepthof the tree: unlimited
4.3. PerformanceMetrics
Theperformancesof theLBPvariantsaremeasuredusingthe followingconventionalmetrics:
Recall= TP
TP+FN , (11)
Precision= TP
TP+FP , (12)
FM= 2×Recall×Precision
Recall+Precision , (13)
Accuracy= TP+TN
Total number of samples ×100%. (14)
InEquations (11)–(14),TP,FP,TNandFN represent truepositive, falsepositive, truenegative
andfalsenegative, respectively. It is tobenotedthatall theexperimentsaredoneusing3-foldcross
validationandthefinal resultsarecomputedafter takingtheaverageperformanceof the three folds.
5. ExperimentalResults
Detailed results for each LBP based feature descriptors except RULBPwith each of the five
classifiers for thecurrentdatabasearegiveninTable2. FromTable2, it canbeobservedthat theRF
classifieroutperformsothers. Thus, classificationresults forRULBPwithdifferent thresholdvaluesare
computedusingRFclassifieronly.Wealsosee that theRULBPoperatorgives thebest accuracy in
classification,amongall theLBPvariantsconsidered.Detailedresultsdepictingtheperformanceof
RULBPfordifferent thresholdsaregiven inTable3.Apictorial comparisonamongtheperformances
of different LBPoperators usingRF classifier is given in Figure 8. Figure 9 shows the imageof a
documentcontainingtextwritten inBanglaandclassifiedusingRULBP,whichgives thebest result
amongallLBPvariants. Inaddition to this, agraphical comparisonof theperformanceofvariousLBP
53
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik