Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Seite - 53 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 53 - in Document Image Processing

Bild der Seite - 53 -

Bild der Seite - 53 - in Document Image Processing

Text der Seite - 53 -

J. Imaging 2018,4, 57 areperformedtochoose theoptimalvalueof th. In thiswork,Weka3 [28], adataminingsoftware (UniversityofWaikato,Hamilton,NewZealand),hasbeenusedforclassificationandvisualization purpose. Thevaluesof theclassifiers’parametersused in thecurrentexperimentaregiven inTable1. Table1.Detailvaluesof theparametersusedbytheclassifiersunderconsideration. Classifier ParameterswithValues NB •Batchsize: 100•Normaldistributionfornumericattributes MLP •LearningRate for thebackpropagationalgorithm: 0.3 •MomentumRate: 0.2 •Numberofepochs to train through: 500 •LearningRate: 0.3 SMO •ComplexityconstantC:1 •ToleranceParameter: 1.0×10−3 •Epsilonforround-offerror: 1.0×10−12 •Therandomnumberseed: 1 K-NN •K:1•Batchsize: 100 RF •Batchsize: 100 •Minimumnumberof instancesper leaf: 1 •Minimumnumericclassvarianceproportionof trainvariance forsplit: 1.0×10−3 •Themaximumdepthof the tree: unlimited 4.3. PerformanceMetrics Theperformancesof theLBPvariantsaremeasuredusingthe followingconventionalmetrics: Recall= TP TP+FN , (11) Precision= TP TP+FP , (12) FM= 2×Recall×Precision Recall+Precision , (13) Accuracy= TP+TN Total number of samples ×100%. (14) InEquations (11)–(14),TP,FP,TNandFN represent truepositive, falsepositive, truenegative andfalsenegative, respectively. It is tobenotedthatall theexperimentsaredoneusing3-foldcross validationandthefinal resultsarecomputedafter takingtheaverageperformanceof the three folds. 5. ExperimentalResults Detailed results for each LBP based feature descriptors except RULBPwith each of the five classifiers for thecurrentdatabasearegiveninTable2. FromTable2, it canbeobservedthat theRF classifieroutperformsothers. Thus, classificationresults forRULBPwithdifferent thresholdvaluesare computedusingRFclassifieronly.Wealsosee that theRULBPoperatorgives thebest accuracy in classification,amongall theLBPvariantsconsidered.Detailedresultsdepictingtheperformanceof RULBPfordifferent thresholdsaregiven inTable3.Apictorial comparisonamongtheperformances of different LBPoperators usingRF classifier is given in Figure 8. Figure 9 shows the imageof a documentcontainingtextwritten inBanglaandclassifiedusingRULBP,whichgives thebest result amongallLBPvariants. Inaddition to this, agraphical comparisonof theperformanceofvariousLBP 53
zurück zum  Buch Document Image Processing"
Document Image Processing
Titel
Document Image Processing
Autoren
Ergina Kavallieratou
Laurence Likforman-Sulem
Herausgeber
MDPI
Ort
Basel
Datum
2018
Sprache
deutsch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing