Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 53 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 53 - in Document Image Processing

Image of the Page - 53 -

Image of the Page - 53 - in Document Image Processing

Text of the Page - 53 -

J. Imaging 2018,4, 57 areperformedtochoose theoptimalvalueof th. In thiswork,Weka3 [28], adataminingsoftware (UniversityofWaikato,Hamilton,NewZealand),hasbeenusedforclassificationandvisualization purpose. Thevaluesof theclassifiers’parametersused in thecurrentexperimentaregiven inTable1. Table1.Detailvaluesof theparametersusedbytheclassifiersunderconsideration. Classifier ParameterswithValues NB •Batchsize: 100•Normaldistributionfornumericattributes MLP •LearningRate for thebackpropagationalgorithm: 0.3 •MomentumRate: 0.2 •Numberofepochs to train through: 500 •LearningRate: 0.3 SMO •ComplexityconstantC:1 •ToleranceParameter: 1.0×10−3 •Epsilonforround-offerror: 1.0×10−12 •Therandomnumberseed: 1 K-NN •K:1•Batchsize: 100 RF •Batchsize: 100 •Minimumnumberof instancesper leaf: 1 •Minimumnumericclassvarianceproportionof trainvariance forsplit: 1.0×10−3 •Themaximumdepthof the tree: unlimited 4.3. PerformanceMetrics Theperformancesof theLBPvariantsaremeasuredusingthe followingconventionalmetrics: Recall= TP TP+FN , (11) Precision= TP TP+FP , (12) FM= 2×Recall×Precision Recall+Precision , (13) Accuracy= TP+TN Total number of samples ×100%. (14) InEquations (11)–(14),TP,FP,TNandFN represent truepositive, falsepositive, truenegative andfalsenegative, respectively. It is tobenotedthatall theexperimentsaredoneusing3-foldcross validationandthefinal resultsarecomputedafter takingtheaverageperformanceof the three folds. 5. ExperimentalResults Detailed results for each LBP based feature descriptors except RULBPwith each of the five classifiers for thecurrentdatabasearegiveninTable2. FromTable2, it canbeobservedthat theRF classifieroutperformsothers. Thus, classificationresults forRULBPwithdifferent thresholdvaluesare computedusingRFclassifieronly.Wealsosee that theRULBPoperatorgives thebest accuracy in classification,amongall theLBPvariantsconsidered.Detailedresultsdepictingtheperformanceof RULBPfordifferent thresholdsaregiven inTable3.Apictorial comparisonamongtheperformances of different LBPoperators usingRF classifier is given in Figure 8. Figure 9 shows the imageof a documentcontainingtextwritten inBanglaandclassifiedusingRULBP,whichgives thebest result amongallLBPvariants. Inaddition to this, agraphical comparisonof theperformanceofvariousLBP 53
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing