Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Seite - 142 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 142 - in Document Image Processing

Bild der Seite - 142 -

Bild der Seite - 142 - in Document Image Processing

Text der Seite - 142 -

J. Imaging 2018,4, 15 4.4. Studyof theContextSize InfluenceUsingDeepOpticalModels This last part of the experimentation studies the influence of the different language units and the context size of the languagemodel, on theHTR systembased ondeep neural networks (seeSections3.4.2and3.4.3). 4.4.1. Results forDeepModelsBasedonRecurrentNeuralNetworkswithBLSTMs InFigure 14, the recognition results obtained for theword-basedRNNsystemarepresented. As explained before, in this case, the recognized OOV words correspond to words attached to punctuationmarks,whichwerecorrectlyrecognizedafter removingthespacebetweenthem(see the examplepresented inFigureA2).Comparedwith theword-basedHMMsystem, theobtainedresults are significantlyworse in terms ofWER; however, in terms of CER andOOVword recognition accuracy, theobtainedresultsaresignificantlybetter. Concretely, thebest resultwasobtainedbyusing a two-gramLM,anditpresentsaWERequal to52.5%±0.8,aCERequal to17.2%±0.3andanOOV WARequal to16.3%±0.9. Figure15showstheresultsobtainedusingsub-wordn-gramLM.Ascanbeobserved, theWFST approachhasnocontext informationabout theseparationbetweenwordswhensub-wordunigrams LMareused; therefore, it isunable toreconstructwordscorrectly inspiteofobtainingagoodCER. Wewill see thiseffect inthenextexperimentswiththesub-wordandcharacter-baseddeepnetsystems. Inthiscase, thebestresultwasobtainedwithafive-gramlanguagemodel (aWERequal to38.6%±0.5, aCERequal to17.3%±0.3andanOOVWARequal to27.4%±1.1). 10% 20% 30% 40% 50% 60% 1 2 3 4 5 6 WER=52.5% CER=17.2% OOV WAR=16.3% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure14.ResultsobtainedbytheRNNword-basedsystemusingn-gramlanguagemodels. 0% 20% 40% 60% 80% 100% 1 2 3 4 5 6 WER=38.6% CER=17.3% OOV WAR=27.4% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure15.ResultsobtainedbytheRNNsub-word-basedsystemusingn-gramlanguagemodels. 142
zurück zum  Buch Document Image Processing"
Document Image Processing
Titel
Document Image Processing
Autoren
Ergina Kavallieratou
Laurence Likforman-Sulem
Herausgeber
MDPI
Ort
Basel
Datum
2018
Sprache
deutsch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Abmessungen
17.0 x 24.4 cm
Seiten
216
Schlagwörter
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Kategorie
Informatik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing