Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 142 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 142 - in Document Image Processing

Image of the Page - 142 -

Image of the Page - 142 - in Document Image Processing

Text of the Page - 142 -

J. Imaging 2018,4, 15 4.4. Studyof theContextSize InfluenceUsingDeepOpticalModels This last part of the experimentation studies the influence of the different language units and the context size of the languagemodel, on theHTR systembased ondeep neural networks (seeSections3.4.2and3.4.3). 4.4.1. Results forDeepModelsBasedonRecurrentNeuralNetworkswithBLSTMs InFigure 14, the recognition results obtained for theword-basedRNNsystemarepresented. As explained before, in this case, the recognized OOV words correspond to words attached to punctuationmarks,whichwerecorrectlyrecognizedafter removingthespacebetweenthem(see the examplepresented inFigureA2).Comparedwith theword-basedHMMsystem, theobtainedresults are significantlyworse in terms ofWER; however, in terms of CER andOOVword recognition accuracy, theobtainedresultsaresignificantlybetter. Concretely, thebest resultwasobtainedbyusing a two-gramLM,anditpresentsaWERequal to52.5%±0.8,aCERequal to17.2%±0.3andanOOV WARequal to16.3%±0.9. Figure15showstheresultsobtainedusingsub-wordn-gramLM.Ascanbeobserved, theWFST approachhasnocontext informationabout theseparationbetweenwordswhensub-wordunigrams LMareused; therefore, it isunable toreconstructwordscorrectly inspiteofobtainingagoodCER. Wewill see thiseffect inthenextexperimentswiththesub-wordandcharacter-baseddeepnetsystems. Inthiscase, thebestresultwasobtainedwithafive-gramlanguagemodel (aWERequal to38.6%±0.5, aCERequal to17.3%±0.3andanOOVWARequal to27.4%±1.1). 10% 20% 30% 40% 50% 60% 1 2 3 4 5 6 WER=52.5% CER=17.2% OOV WAR=16.3% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure14.ResultsobtainedbytheRNNword-basedsystemusingn-gramlanguagemodels. 0% 20% 40% 60% 80% 100% 1 2 3 4 5 6 WER=38.6% CER=17.3% OOV WAR=27.4% n-gram size Word Error Rate Character Error Rate OOV Word Accuracy Rate Figure15.ResultsobtainedbytheRNNsub-word-basedsystemusingn-gramlanguagemodels. 142
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing