Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Seite - 141 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 141 - in Emerging Technologies for Electric and Hybrid Vehicles

Bild der Seite - 141 -

Bild der Seite - 141 - in Emerging Technologies for Electric and Hybrid Vehicles

Text der Seite - 141 -

Energies 2016,9, 563 The motor shown in Figure A4 is powered by the AC current, delivered from the power electronics thatconverts theDCcurrentsuppliedbythebattery.As thedriverpresses theaccelerator pedal, a corresponding“torquedemand” signal is convertedby thevehicle control unit (VCU) to anappropriatesignal for themotorcontrolunit (powerelectronics),which in turntransformsit into acurrent frequencysignal. Themotor controlunit (MCU) is incorporatedwitha thermalderating system inorder to limit the torquedemand receivedby thepower electronics and toprevent any critical operating conditions for themotor. The assignedpowertrain can accelerate the vehicle to amaximumspeedof120km/h. FigureA4.Thebasicdrive train topologyof theMercedesA-Class researchvehicle [30]. References 1. Wijewardana, S.; Vepa, R.; Shaheed,M.H.Dynamic battery cellmodel and state of charge estimation. J.PowerSources2016,308, 109–120. [CrossRef] 2. DoppebatteryModel 2auer,M.Hybrid andElectricVehicles—LectureNotes; ETI-HEV,Karlsruhe Institute of Technology:Karlsruhe,Germany,2014. 3. Ivers-Tiffee, E. Batteries and Fuel Cells—Lecture Notes; IWE, Karlsruhe Institute of Technology: Karlsruhe,Germany,2012. 4. Illig, J.PhysicallyBased ImpedanceModellingofLithium-IonCells. Ph.D.Thesis,Karlsruhe Instituteof Technology,Karlsruhe,Germany,2014. 5. Tremblay,O.; Dessaint, L.-A. Experimental validation of a battery dynamicmodel for EVapplications. WorldElectr.Veh. J.2009,3, 1–10. 6. Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough, J.B.D.Phospho-olivinesaspositive-electrodematerials for rechargeable lithiumbatteries. J.Electrochem. Soc. 1997,144, 1188–1194. [CrossRef] 7. ValenceTechnology.U-Charge®XPRev2UserManual;ValenceTechnology, Inc.:Austin,TX,USA,2011. 8. Lin,N.;Ci, S.;Li,H.Anenhancedcircuit-basedbatterymodelwithconsiderationsof temperatureeffect. InProceedingsof the2014 IEEEEnergyConversionCongressandExposition(ECCE),Pittsburgh,PA,USA, 14–18September2014;pp.3985–3989. 9. Doyle,M.;Fuller,T.F.;Newman, J.Modelingofgalvanostatic chargeanddischargeof the lithium/polymer/ insertioncell. J.Electrochem. Soc. 1993,140, 1526–1533. [CrossRef] 10. Dees, D.W.; Battaglia, V.S.; Bélanger, A. Electrochemical modeling of lithium polymer batteries. J.PowerSources2002,110, 310–320. [CrossRef] 11. He,H.;Xiong,R.;Guo,H.;Li, S.Comparisonstudyonthebatterymodelsusedfor theenergymanagement ofbatteries inelectricvehicles.EnergyConvers.Manag. 2012,64, 113–121. [CrossRef] 141
zurĂĽck zum  Buch Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Titel
Emerging Technologies for Electric and Hybrid Vehicles
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Abmessungen
17.0 x 24.4 cm
Seiten
376
Schlagwörter
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles