Seite - 141 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 141 -
Text der Seite - 141 -
Energies 2016,9, 563
The motor shown in Figure A4 is powered by the AC current, delivered from the power
electronics thatconverts theDCcurrentsuppliedbythebattery.As thedriverpresses theaccelerator
pedal, a corresponding“torquedemand” signal is convertedby thevehicle control unit (VCU) to
anappropriatesignal for themotorcontrolunit (powerelectronics),which in turntransformsit into
acurrent frequencysignal. Themotor controlunit (MCU) is incorporatedwitha thermalderating
system inorder to limit the torquedemand receivedby thepower electronics and toprevent any
critical operating conditions for themotor. The assignedpowertrain can accelerate the vehicle to
amaximumspeedof120km/h.
FigureA4.Thebasicdrive train topologyof theMercedesA-Class researchvehicle [30].
References
1. Wijewardana, S.; Vepa, R.; Shaheed,M.H.Dynamic battery cellmodel and state of charge estimation.
J.PowerSources2016,308, 109–120. [CrossRef]
2. DoppebatteryModel 2auer,M.Hybrid andElectricVehicles—LectureNotes; ETI-HEV,Karlsruhe Institute of
Technology:Karlsruhe,Germany,2014.
3. Ivers-Tiffee, E. Batteries and Fuel Cells—Lecture Notes; IWE, Karlsruhe Institute of Technology:
Karlsruhe,Germany,2012.
4. Illig, J.PhysicallyBased ImpedanceModellingofLithium-IonCells. Ph.D.Thesis,Karlsruhe Instituteof
Technology,Karlsruhe,Germany,2014.
5. Tremblay,O.; Dessaint, L.-A. Experimental validation of a battery dynamicmodel for EVapplications.
WorldElectr.Veh. J.2009,3, 1–10.
6. Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough, J.B.D.Phospho-olivinesaspositive-electrodematerials for
rechargeable lithiumbatteries. J.Electrochem. Soc. 1997,144, 1188–1194. [CrossRef]
7. ValenceTechnology.U-Charge®XPRev2UserManual;ValenceTechnology, Inc.:Austin,TX,USA,2011.
8. Lin,N.;Ci, S.;Li,H.Anenhancedcircuit-basedbatterymodelwithconsiderationsof temperatureeffect.
InProceedingsof the2014 IEEEEnergyConversionCongressandExposition(ECCE),Pittsburgh,PA,USA,
14–18September2014;pp.3985–3989.
9. Doyle,M.;Fuller,T.F.;Newman, J.Modelingofgalvanostatic chargeanddischargeof the lithium/polymer/
insertioncell. J.Electrochem. Soc. 1993,140, 1526–1533. [CrossRef]
10. Dees, D.W.; Battaglia, V.S.; Bélanger, A. Electrochemical modeling of lithium polymer batteries.
J.PowerSources2002,110, 310–320. [CrossRef]
11. He,H.;Xiong,R.;Guo,H.;Li, S.Comparisonstudyonthebatterymodelsusedfor theenergymanagement
ofbatteries inelectricvehicles.EnergyConvers.Manag. 2012,64, 113–121. [CrossRef]
141
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik