Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 141 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 141 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 141 -

Image of the Page - 141 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 141 -

Energies 2016,9, 563 The motor shown in Figure A4 is powered by the AC current, delivered from the power electronics thatconverts theDCcurrentsuppliedbythebattery.As thedriverpresses theaccelerator pedal, a corresponding“torquedemand” signal is convertedby thevehicle control unit (VCU) to anappropriatesignal for themotorcontrolunit (powerelectronics),which in turntransformsit into acurrent frequencysignal. Themotor controlunit (MCU) is incorporatedwitha thermalderating system inorder to limit the torquedemand receivedby thepower electronics and toprevent any critical operating conditions for themotor. The assignedpowertrain can accelerate the vehicle to amaximumspeedof120km/h. FigureA4.Thebasicdrive train topologyof theMercedesA-Class researchvehicle [30]. References 1. Wijewardana, S.; Vepa, R.; Shaheed,M.H.Dynamic battery cellmodel and state of charge estimation. J.PowerSources2016,308, 109–120. [CrossRef] 2. DoppebatteryModel 2auer,M.Hybrid andElectricVehicles—LectureNotes; ETI-HEV,Karlsruhe Institute of Technology:Karlsruhe,Germany,2014. 3. Ivers-Tiffee, E. Batteries and Fuel Cells—Lecture Notes; IWE, Karlsruhe Institute of Technology: Karlsruhe,Germany,2012. 4. Illig, J.PhysicallyBased ImpedanceModellingofLithium-IonCells. Ph.D.Thesis,Karlsruhe Instituteof Technology,Karlsruhe,Germany,2014. 5. Tremblay,O.; Dessaint, L.-A. Experimental validation of a battery dynamicmodel for EVapplications. WorldElectr.Veh. J.2009,3, 1–10. 6. Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough, J.B.D.Phospho-olivinesaspositive-electrodematerials for rechargeable lithiumbatteries. J.Electrochem. Soc. 1997,144, 1188–1194. [CrossRef] 7. ValenceTechnology.U-Charge®XPRev2UserManual;ValenceTechnology, Inc.:Austin,TX,USA,2011. 8. Lin,N.;Ci, S.;Li,H.Anenhancedcircuit-basedbatterymodelwithconsiderationsof temperatureeffect. InProceedingsof the2014 IEEEEnergyConversionCongressandExposition(ECCE),Pittsburgh,PA,USA, 14–18September2014;pp.3985–3989. 9. Doyle,M.;Fuller,T.F.;Newman, J.Modelingofgalvanostatic chargeanddischargeof the lithium/polymer/ insertioncell. J.Electrochem. Soc. 1993,140, 1526–1533. [CrossRef] 10. Dees, D.W.; Battaglia, V.S.; Bélanger, A. Electrochemical modeling of lithium polymer batteries. J.PowerSources2002,110, 310–320. [CrossRef] 11. He,H.;Xiong,R.;Guo,H.;Li, S.Comparisonstudyonthebatterymodelsusedfor theenergymanagement ofbatteries inelectricvehicles.EnergyConvers.Manag. 2012,64, 113–121. [CrossRef] 141
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles