Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Seite - 177 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 177 - in Emerging Technologies for Electric and Hybrid Vehicles

Bild der Seite - 177 -

Bild der Seite - 177 - in Emerging Technologies for Electric and Hybrid Vehicles

Text der Seite - 177 -

Energies 2017,10, 5 18. Li, K.; Tseng, K.J. An equivalent circuit model for state of energy estimation of lithium-ion battery. InProceedingsof the2016 IEEEAppliedPowerElectronicsConferenceandExposition (APEC),LongBeach, CA,USA,20–24March2016;pp.3422–3430. 19. Fuller,T.F.;Doyle,M.;Newman, J.Relaxationphenomenain lithium-ion-insertioncells. J.Electrochem. Soc. 1994,141, 982–990. [CrossRef] 20. Smith, K.A. ElectrochemicalModeling, Estimation andControl of Lithium IonBatteries. Ph.D. Thesis, ThePennsylvaniaStateUniversity,StateCollege,PA,USA,2006. 21. Park,M.; Zhang, X.; Chung,M.; Less,G.B.; Sastry,A.M.A reviewof conductionphenomena inLi-ion batteries. J.PowerSources2010,195, 7904–7929. [CrossRef] 22. Karden,E.;Buller,S.;DeDoncker,R.W.Amethodformeasurementandinterpretationof impedancespectra for industrialbatteries. J.PowerSources2000,85, 72–78. [CrossRef] 23. Thele,M.;Bohlen,O.;Sauer,D.U.;Karden,E.Developmentofavoltage-behaviormodel fornimhbatteries usinganimpedance-basedmodelingconcept. J.PowerSources2008,175, 635–643. [CrossRef] 24. Buller,S.;Thele,M.;DeDoncker,R.;Karden,E. Impedance-basedsimulationmodelsof supercapacitorsand Li-ionbatteries forpowerelectronicapplications. IEEETrans. Ind.Appl. 2005,41, 742–747. [CrossRef] 25. Waag, W.; KĂ€bitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its inïŹ‚uence on the application. Appl. Energy 2013,102, 885–897. [CrossRef] 26. Howey,D.A.;Mitcheson,P.D.;YuïŹt,V.;Offer,G.J.;Brandon,N.P.Onlinemeasurementofbattery impedance usingmotorcontrollerexcitation. IEEETrans.Veh. Technol. 2014,63, 2557–2566. [CrossRef] 27. Zheng,Y.;Lu,L.;Han,X.;Li, J.;Ouyang,M.Lifepo4batterypackcapacityestimationforelectricvehicles basedonchargingcellvoltagecurve transformation. J.PowerSources2013,226, 33–41. [CrossRef] 28. Nakayama,M.; Iizuka,K.;Shiiba,H.;Baba,S.;Nogami,M.Asymmetry inanodicandcathodicpolarization proïŹle forLiFePO4positiveelectrode inrechargeableLi ionbattery. J.Ceram. Soc. Jpn. 2011,119, 692–696. [CrossRef] 29. Musio,M.; Damiano, A. A simpliïŹed charging batterymodel for smart electric vehicles applications. InProceedings of the 2014 IEEE International EnergyConference (ENERGYCON),Dubrovnik, Croatia, 13–16May2014;pp.1357–1364. 30. Tsang,K.;Sun,L.;Chan,W. IdentiïŹcationandmodellingof lithiumionbattery.EnergyConvers.Manag. 2010, 51, 2857–2862. [CrossRef] 31. Yao,L.W.;Aziz, J.;Kong,P.Y.; Idris,N.;Alsofyani, I.Modelingof lithiumtitanatebattery forchargerdesign. InProceedingsof the2014IEEEAustralasianUniversitiesPowerEngineeringConference (AUPEC),Perth, Australia, 28Sepember–1October2014;pp.1–5. 32. Jiang, J.;Liu,Q.;Zhang,C.;Zhang,W.EvaluationofacceptablechargingcurrentofpowerLi-ionbatteries basedonpolarizationcharacteristics. IEEETrans. Ind. Electron. 2014,61, 6844–6851. [CrossRef] 33. Kim,N.;Ahn, J.-H.;Kim,D.-H.;Lee,B.-K.Adaptive loss reductionchargingstrategyconsideringvariation of internal impedanceof lithium-ionpolymerbatteries inelectricvehiclechargingsystems. InProceedings of the2016 IEEEAppliedPowerElectronicsConferenceandExposition (APEC),LongBeach,CA,USA, 20–24March2016;pp.1273–1279. 34. Chen,Z.; Xia, B.;Mi,C.C.; Xiong,R.Loss-minimization-basedcharging strategy for lithium-ionbattery. IEEETrans. Ind.Appl. 2015,51, 4121–4129. [CrossRef] 35. Rao,R.;Vrudhula,S.;Rakhmatov,D.N.Batterymodelingforenergyawaresystemdesign.Computer2003, 36, 77–87. 36. Fleischer, C.; Waag,W.; Heyn,H.-M.; Sauer, D.U.On-line adaptive battery impedance parameter and stateestimationconsideringphysicalprinciples inreducedorderequivalentcircuitbatterymodels: Part1. Requirements, critical reviewofmethodsandmodeling. J.PowerSources2014,260, 276–291. [CrossRef] 37. Schweighofer,B.;Raab,K.M.;Brasseur,G.Modelingofhighpowerautomotivebatteriesbytheuseofan automatedtest system. IEEETrans. Instrum.Meas. 2003,52, 1087–1091. [CrossRef] 38. Castano,S.;Gauchia,L.;Voncila,E.; Sanz, J.DynamicalmodelingprocedureofaLi-ionbatterypacksuitable for real-timeapplications.EnergyConvers.Manag. 2015,92, 396–405. [CrossRef] 39. Chen,M.; Rincon-Mora, G.A. Accurate electrical batterymodel capable of predicting runtime and iv performance. IEEETrans. EnergyConvers. 2006,21, 504–511. [CrossRef] 177
zurĂŒck zum  Buch Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Titel
Emerging Technologies for Electric and Hybrid Vehicles
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Abmessungen
17.0 x 24.4 cm
Seiten
376
Schlagwörter
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles