Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 177 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 177 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 177 -

Image of the Page - 177 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 177 -

Energies 2017,10, 5 18. Li, K.; Tseng, K.J. An equivalent circuit model for state of energy estimation of lithium-ion battery. InProceedingsof the2016 IEEEAppliedPowerElectronicsConferenceandExposition (APEC),LongBeach, CA,USA,20–24March2016;pp.3422–3430. 19. Fuller,T.F.;Doyle,M.;Newman, J.Relaxationphenomenain lithium-ion-insertioncells. J.Electrochem. Soc. 1994,141, 982–990. [CrossRef] 20. Smith, K.A. ElectrochemicalModeling, Estimation andControl of Lithium IonBatteries. Ph.D. Thesis, ThePennsylvaniaStateUniversity,StateCollege,PA,USA,2006. 21. Park,M.; Zhang, X.; Chung,M.; Less,G.B.; Sastry,A.M.A reviewof conductionphenomena inLi-ion batteries. J.PowerSources2010,195, 7904–7929. [CrossRef] 22. Karden,E.;Buller,S.;DeDoncker,R.W.Amethodformeasurementandinterpretationof impedancespectra for industrialbatteries. J.PowerSources2000,85, 72–78. [CrossRef] 23. Thele,M.;Bohlen,O.;Sauer,D.U.;Karden,E.Developmentofavoltage-behaviormodel fornimhbatteries usinganimpedance-basedmodelingconcept. J.PowerSources2008,175, 635–643. [CrossRef] 24. Buller,S.;Thele,M.;DeDoncker,R.;Karden,E. Impedance-basedsimulationmodelsof supercapacitorsand Li-ionbatteries forpowerelectronicapplications. IEEETrans. Ind.Appl. 2005,41, 742–747. [CrossRef] 25. Waag, W.; Käbitz, S.; Sauer, D.U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl. Energy 2013,102, 885–897. [CrossRef] 26. Howey,D.A.;Mitcheson,P.D.;Yufit,V.;Offer,G.J.;Brandon,N.P.Onlinemeasurementofbattery impedance usingmotorcontrollerexcitation. IEEETrans.Veh. Technol. 2014,63, 2557–2566. [CrossRef] 27. Zheng,Y.;Lu,L.;Han,X.;Li, J.;Ouyang,M.Lifepo4batterypackcapacityestimationforelectricvehicles basedonchargingcellvoltagecurve transformation. J.PowerSources2013,226, 33–41. [CrossRef] 28. Nakayama,M.; Iizuka,K.;Shiiba,H.;Baba,S.;Nogami,M.Asymmetry inanodicandcathodicpolarization profile forLiFePO4positiveelectrode inrechargeableLi ionbattery. J.Ceram. Soc. Jpn. 2011,119, 692–696. [CrossRef] 29. Musio,M.; Damiano, A. A simplified charging batterymodel for smart electric vehicles applications. InProceedings of the 2014 IEEE International EnergyConference (ENERGYCON),Dubrovnik, Croatia, 13–16May2014;pp.1357–1364. 30. Tsang,K.;Sun,L.;Chan,W. Identificationandmodellingof lithiumionbattery.EnergyConvers.Manag. 2010, 51, 2857–2862. [CrossRef] 31. Yao,L.W.;Aziz, J.;Kong,P.Y.; Idris,N.;Alsofyani, I.Modelingof lithiumtitanatebattery forchargerdesign. InProceedingsof the2014IEEEAustralasianUniversitiesPowerEngineeringConference (AUPEC),Perth, Australia, 28Sepember–1October2014;pp.1–5. 32. Jiang, J.;Liu,Q.;Zhang,C.;Zhang,W.EvaluationofacceptablechargingcurrentofpowerLi-ionbatteries basedonpolarizationcharacteristics. IEEETrans. Ind. Electron. 2014,61, 6844–6851. [CrossRef] 33. Kim,N.;Ahn, J.-H.;Kim,D.-H.;Lee,B.-K.Adaptive loss reductionchargingstrategyconsideringvariation of internal impedanceof lithium-ionpolymerbatteries inelectricvehiclechargingsystems. InProceedings of the2016 IEEEAppliedPowerElectronicsConferenceandExposition (APEC),LongBeach,CA,USA, 20–24March2016;pp.1273–1279. 34. Chen,Z.; Xia, B.;Mi,C.C.; Xiong,R.Loss-minimization-basedcharging strategy for lithium-ionbattery. IEEETrans. Ind.Appl. 2015,51, 4121–4129. [CrossRef] 35. Rao,R.;Vrudhula,S.;Rakhmatov,D.N.Batterymodelingforenergyawaresystemdesign.Computer2003, 36, 77–87. 36. Fleischer, C.; Waag,W.; Heyn,H.-M.; Sauer, D.U.On-line adaptive battery impedance parameter and stateestimationconsideringphysicalprinciples inreducedorderequivalentcircuitbatterymodels: Part1. Requirements, critical reviewofmethodsandmodeling. J.PowerSources2014,260, 276–291. [CrossRef] 37. Schweighofer,B.;Raab,K.M.;Brasseur,G.Modelingofhighpowerautomotivebatteriesbytheuseofan automatedtest system. IEEETrans. Instrum.Meas. 2003,52, 1087–1091. [CrossRef] 38. Castano,S.;Gauchia,L.;Voncila,E.; Sanz, J.DynamicalmodelingprocedureofaLi-ionbatterypacksuitable for real-timeapplications.EnergyConvers.Manag. 2015,92, 396–405. [CrossRef] 39. Chen,M.; Rincon-Mora, G.A. Accurate electrical batterymodel capable of predicting runtime and iv performance. IEEETrans. EnergyConvers. 2006,21, 504–511. [CrossRef] 177
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles