Seite - 204 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 204 -
Text der Seite - 204 -
Energies 2016,9, 594
Theexample indicates thatsumminguplocalpredictionsofeventsmaycausepredictionerrors
thatwouldnothavebeenmadeatamoreglobal level. Furthermore,predictionsbasedonstatistics
alonework ingeneralonly for largegroups,e.g., forneighborhoods insteadofhouses [11].Whenthis
observationisusedasawork-aroundintheplanning-basedDSMapproach,detailsaboutuserbehavior
andmeasurementsareaccumulatedat theneighborhoodcontroller level suchthatdecisionsmaybe
madetherebasedonprobabilitiesover largegroups (insteadofwithin thehouse).However, suchan
approachwouldnolongerbe (decentralized)DSM,but is, e.g., closer todemandresponse [1]andno
longerdistributed. Furthermore, itwouldrequiresharingofprivacysensitive information. Thegoal
of thisarticle is toavoidthementionedrestrictions. Summarizing,wemaystate that robustdemand
sidemanagementshouldonlyrelyonhouse levelpredictions if thismethodology is robustagainst
predictionerrors.
2.3.GroupsofElectricVehicles
For the application of EV charging, the state-of-the-art research onDSM (see, e.g., [13–17])
requiresEVowners toshare information(e.g.,EVarrival)withacentralizedcontroller. Theapproach
presented in thisarticledoesnot requiresuchsharingofprivacysensitive informationandhasa low
communicationfootprint.
TheapproachORCHARDpresentedin[14]alsoflattenstheloadprofileforagroupofEVswithout
requiringknowledgeof futureEVarrivals. Ithasa timecomplexityofO(N5) forNEVsandissimilar
toourwork in thesense thatwealsodonotknowaboutEVarrivalsbeforehand. Contrary to [14],
ourworkrequiresO(M logM) time(forM timeintervals)whenanEVarrives (withineachhouse).
Furthermore,ourresearchflattens the loadbothat thehouse levelandat theneighborhoodlevel.
3.OnlineElectricVehiclePlanning
Thissectiondescribes for thecaseofcharginganElectricVehicle (EV)howahousecanfollow
someprofile, forexample tomakethe loadprofileasflataspossible,byusingproperchargingsettings.
Section3.1 introduces thecorrespondingEVplanningproblem. Section3.2presentsourapproach,
whichis inspiredbyonlineoptimization,rollinghorizonplanning,andmodelpredictivecontrol: at the
startofeverytimeinterval,weuseapredictionof thepowerfor this interval togetherwithaprediction
ofasinglevalue thatcharacterizes therequirements for the future intervals todetermine thecharging
power for thenext timeinterval.
Bydelaying thedecision for theamountofchargingdone inan intervaluntil theverystartof this
interval,wecanhopethatmoreaccuratepredictionsarepossible. Furthermore,wecancompensate
forerrorsmade inprevious time intervals. Finally,Section3.3discusses the influenceofprediction
errorsonthisalgorithm.
3.1. TheEVChargingProblem
Wefirst introducesomenotationbeforewegivea formaldefinitionof theEVplanningproblem.
Let anbe the time intervalatwhich theelectricvehiclearrivesathousen∈{1,. . . ,N}andis ready
tobecharged, letdnbethe the intervalatwhichthecharginghas tobecompleted,andletCnbethe
energythatneeds tobechargedin the intervals an, . . . ,dn. TheEVchargingdecisionscanbedescribed
byavector xn=(xn,1, . . . ,xn,M),wherexn,m is theamountofelectricitychargedforvehiclenduring
timeintervalm. Themaximumchargingpower isgivenby x¯ (inwatts), andthevector xn is feasible
ifxn,m= 0 form< an andm> dn , 0≤ xn,m≤ x¯ in theremaining intervals, and∑dnm=an τxn,m=Cn,
whereτ is the lengthofa timeinterval. Toease thenotation,weuseτ=1.
Let thedesiredpowerprofile for thehouseandEVloadtogetherbe qn. Thegoal is todetermine
achargingvector xn such that theuncontrollablehousepowerconsumption ( pn) togetherwith the
charging xnmatches thisdesiredpowerprofile qn aswell aspossible. Moreprecisely,we look for
avector xn thatminimizes theEuclideandistancebetweenthevectors qn and ( pn+ xn). Toexpress the
differencebetweentheactualanddesired load,wedefinezn,m := pn,m+xn,m−qn,m,m∈{1,. . . ,M}.
204
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik