Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 204 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 204 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 204 -

Image of the Page - 204 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 204 -

Energies 2016,9, 594 Theexample indicates thatsumminguplocalpredictionsofeventsmaycausepredictionerrors thatwouldnothavebeenmadeatamoreglobal level. Furthermore,predictionsbasedonstatistics alonework ingeneralonly for largegroups,e.g., forneighborhoods insteadofhouses [11].Whenthis observationisusedasawork-aroundintheplanning-basedDSMapproach,detailsaboutuserbehavior andmeasurementsareaccumulatedat theneighborhoodcontroller level suchthatdecisionsmaybe madetherebasedonprobabilitiesover largegroups (insteadofwithin thehouse).However, suchan approachwouldnolongerbe (decentralized)DSM,but is, e.g., closer todemandresponse [1]andno longerdistributed. Furthermore, itwouldrequiresharingofprivacysensitive information. Thegoal of thisarticle is toavoidthementionedrestrictions. Summarizing,wemaystate that robustdemand sidemanagementshouldonlyrelyonhouse levelpredictions if thismethodology is robustagainst predictionerrors. 2.3.GroupsofElectricVehicles For the application of EV charging, the state-of-the-art research onDSM (see, e.g., [13–17]) requiresEVowners toshare information(e.g.,EVarrival)withacentralizedcontroller. Theapproach presented in thisarticledoesnot requiresuchsharingofprivacysensitive informationandhasa low communicationfootprint. TheapproachORCHARDpresentedin[14]alsoflattenstheloadprofileforagroupofEVswithout requiringknowledgeof futureEVarrivals. Ithasa timecomplexityofO(N5) forNEVsandissimilar toourwork in thesense thatwealsodonotknowaboutEVarrivalsbeforehand. Contrary to [14], ourworkrequiresO(M logM) time(forM timeintervals)whenanEVarrives (withineachhouse). Furthermore,ourresearchflattens the loadbothat thehouse levelandat theneighborhoodlevel. 3.OnlineElectricVehiclePlanning Thissectiondescribes for thecaseofcharginganElectricVehicle (EV)howahousecanfollow someprofile, forexample tomakethe loadprofileasflataspossible,byusingproperchargingsettings. Section3.1 introduces thecorrespondingEVplanningproblem. Section3.2presentsourapproach, whichis inspiredbyonlineoptimization,rollinghorizonplanning,andmodelpredictivecontrol: at the startofeverytimeinterval,weuseapredictionof thepowerfor this interval togetherwithaprediction ofasinglevalue thatcharacterizes therequirements for the future intervals todetermine thecharging power for thenext timeinterval. Bydelaying thedecision for theamountofchargingdone inan intervaluntil theverystartof this interval,wecanhopethatmoreaccuratepredictionsarepossible. Furthermore,wecancompensate forerrorsmade inprevious time intervals. Finally,Section3.3discusses the influenceofprediction errorsonthisalgorithm. 3.1. TheEVChargingProblem Wefirst introducesomenotationbeforewegivea formaldefinitionof theEVplanningproblem. Let anbe the time intervalatwhich theelectricvehiclearrivesathousen∈{1,. . . ,N}andis ready tobecharged, letdnbethe the intervalatwhichthecharginghas tobecompleted,andletCnbethe energythatneeds tobechargedin the intervals an, . . . ,dn. TheEVchargingdecisionscanbedescribed byavector xn=(xn,1, . . . ,xn,M),wherexn,m is theamountofelectricitychargedforvehiclenduring timeintervalm. Themaximumchargingpower isgivenby x¯ (inwatts), andthevector xn is feasible ifxn,m= 0 form< an andm> dn , 0≤ xn,m≤ x¯ in theremaining intervals, and∑dnm=an τxn,m=Cn, whereτ is the lengthofa timeinterval. Toease thenotation,weuseτ=1. Let thedesiredpowerprofile for thehouseandEVloadtogetherbe qn. Thegoal is todetermine achargingvector xn such that theuncontrollablehousepowerconsumption ( pn) togetherwith the charging xnmatches thisdesiredpowerprofile qn aswell aspossible. Moreprecisely,we look for avector xn thatminimizes theEuclideandistancebetweenthevectors qn and ( pn+ xn). Toexpress the differencebetweentheactualanddesired load,wedefinezn,m := pn,m+xn,m−qn,m,m∈{1,. . . ,M}. 204
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles