Seite - 239 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 239 -
Text der Seite - 239 -
Energies 2016,9, 410
Table4.Performancecomparisonswithotherpublishedconverters.
Items Topology
ThisWork [17] [22] [23]
Switchingcontrol structure two-phase single-phase single-phase single-phase
Outputripple Low High Medium Medium
Step-upconversionratio 4/(1´Db) n/(1´Db) 2/(1´Db) 1/(1´Db)2
Step-downconversionratio Dd/4 Dd/(1+n´nDd) Dd/2 (Dd)2
High-sidevoltage 385V 400V 200V 62.5V
Low-sidevoltage 48V 48V 24V 10V
Realizedprototypepowerrating 500W 200W 200W 100W
Numberofmainswitches 8 4 4 4
Numberofstoragecomponents 7 5 5 5
Maximumefficiency(chargestate) 96% 91.6% 94.8% 91.5%
Maximumefficiency(dischargestate) 95% 94.3% 94.1% 92.5%
n: the turnsratioofcoupled inductor [17].
Load
Source Scope
Converter
Controller Power
Meter
Figure23.Photographof therealizedBDCprototypeandthe testbenchsystem.
5.Conclusions
Anovel BDC topologywith high voltage conversion ratio is developed and a 500W rating
prototype systemwith 48Vbattery input is constructed. Applying thedevelopedBDC topology
to the48Vmini-hybridpowertrainsystemisalsoexpected in the future [27]. In this study, thanks
to theULClocatedat the low-sidestage,highpowerdensityandefficiency inall loadrangemake
thestudiedBDCapromisingtwo-stagepowerarchitecture. Furthermore, the IBCPClocatedat the
high-side stagecanachieveamuchhighervoltageconversion ratioundera reasonabledutycycle.
Insummary, theproposednovelBDCoffers the following improvements: (1)highvoltageconversion
ratio; (2) lowripplecurrent; (3) it is simpler todesign, implementandcontrol. Finally,a500Wrating
low-powerprototypesystemisgivenasanexampleforverifyingthevalidityoftheoperationprinciple.
Experimental results show that ahighest efficiencyof 96%and95%canbeachieved, respectively,
in chargeanddischarge states. Certainly, bymakinga suitableprintedcircuit board (PCB) layout,
andwithgoodcomponentplacementandgoodheatdissipationtransferprocess, thenovelBDCcan
be implementedforhigherpowerconversionapplications.
Acknowledgments:ThisresearchissponsoredbytheMinistryofScienceandTechnology,Taiwan,undercontracts
104-2221-E-027-125, 104-2623-E-027-005-ET, and104-2622-E-027-023-CC3. Theauthorwould like to thank the
student, Jie-TingLi for forhishelp in theexperimentandDr.Yuan-ChihLinforhissuggestions.
Conflictsof Interest:Theauthordeclaresnoconflictof interest.
References
1. Lai,C.M.; Pan,C.T.; Cheng,M.C.High-efficiencymodularhigh step-up interleavedboost converter for
dc-microgridapplications. IEEETrans. Ind.Appl. 2012,48, 161–171. [CrossRef]
2. Boroyevich,D.;Cvetkovic, I.;Burgos,R.;Dong,D. Intergrid:Afutureelectronicenergynetwork? IEEEJ.
Emerg. Sel. Top. PowerElectron. 2013,1, 127–138. [CrossRef]
239
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik