Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 239 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 239 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 239 -

Image of the Page - 239 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 239 -

Energies 2016,9, 410 Table4.Performancecomparisonswithotherpublishedconverters. Items Topology ThisWork [17] [22] [23] Switchingcontrol structure two-phase single-phase single-phase single-phase Outputripple Low High Medium Medium Step-upconversionratio 4/(1´Db) n/(1´Db) 2/(1´Db) 1/(1´Db)2 Step-downconversionratio Dd/4 Dd/(1+n´nDd) Dd/2 (Dd)2 High-sidevoltage 385V 400V 200V 62.5V Low-sidevoltage 48V 48V 24V 10V Realizedprototypepowerrating 500W 200W 200W 100W Numberofmainswitches 8 4 4 4 Numberofstoragecomponents 7 5 5 5 Maximumefficiency(chargestate) 96% 91.6% 94.8% 91.5% Maximumefficiency(dischargestate) 95% 94.3% 94.1% 92.5% n: the turnsratioofcoupled inductor [17]. Load Source Scope Converter Controller Power Meter Figure23.Photographof therealizedBDCprototypeandthe testbenchsystem. 5.Conclusions Anovel BDC topologywith high voltage conversion ratio is developed and a 500W rating prototype systemwith 48Vbattery input is constructed. Applying thedevelopedBDC topology to the48Vmini-hybridpowertrainsystemisalsoexpected in the future [27]. In this study, thanks to theULClocatedat the low-sidestage,highpowerdensityandefficiency inall loadrangemake thestudiedBDCapromisingtwo-stagepowerarchitecture. Furthermore, the IBCPClocatedat the high-side stagecanachieveamuchhighervoltageconversion ratioundera reasonabledutycycle. Insummary, theproposednovelBDCoffers the following improvements: (1)highvoltageconversion ratio; (2) lowripplecurrent; (3) it is simpler todesign, implementandcontrol. Finally,a500Wrating low-powerprototypesystemisgivenasanexampleforverifyingthevalidityoftheoperationprinciple. Experimental results show that ahighest efficiencyof 96%and95%canbeachieved, respectively, in chargeanddischarge states. Certainly, bymakinga suitableprintedcircuit board (PCB) layout, andwithgoodcomponentplacementandgoodheatdissipationtransferprocess, thenovelBDCcan be implementedforhigherpowerconversionapplications. Acknowledgments:ThisresearchissponsoredbytheMinistryofScienceandTechnology,Taiwan,undercontracts 104-2221-E-027-125, 104-2623-E-027-005-ET, and104-2622-E-027-023-CC3. Theauthorwould like to thank the student, Jie-TingLi for forhishelp in theexperimentandDr.Yuan-ChihLinforhissuggestions. Conflictsof Interest:Theauthordeclaresnoconflictof interest. References 1. Lai,C.M.; Pan,C.T.; Cheng,M.C.High-efficiencymodularhigh step-up interleavedboost converter for dc-microgridapplications. IEEETrans. Ind.Appl. 2012,48, 161–171. [CrossRef] 2. Boroyevich,D.;Cvetkovic, I.;Burgos,R.;Dong,D. Intergrid:Afutureelectronicenergynetwork? IEEEJ. Emerg. Sel. Top. PowerElectron. 2013,1, 127–138. [CrossRef] 239
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles