Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Algorithms for Scheduling Problems
Page - 11 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 11 - in Algorithms for Scheduling Problems

Image of the Page - 11 -

Image of the Page - 11 - in Algorithms for Scheduling Problems

Text of the Page - 11 -

Algorithms 2018,11, 18 Algorithm1:Greedyinsertionheuristicalgorithmwithmulti-stagefilteringmechanism 1. Sortall jobs innon-increasingorderof theirpowerconsumptionrates 2. Initialization: Ik=bk+1−bk, forall 1≤k≤m 3.For i=1tondo 3.1. If layer1 C1. IfCondition1 issatisfied Initial theperiod indexkk=argmink∈A(Ik≥ ti) //Job i isprocessedwithinperiodkk. C2.Else ifCondition2 issatisfied //Job i isprocessedacrossperiodskandk+1. 3.2.Else if layer2 C3. IfCondition3 issatisfied C3.1. If inequality (8) isnotsatisfied //Job i isprocessedacrossperiodsk,k+1,andk+2. C3.2.Else Initial theperiod indexkk′=argmink′∈B(Ik′ ≥ ti) //Job i isprocessedwithinperiodkk’. C4.Else ifCondition4 issatisfied C4.1. Ifdk+1=0 //Calculate cost1, cost3,and cost4andinsert job i into thepositionwithminimal insertioncost. C4.2.Else ifdk+2=0anddk+1>0 //Calculate cost1, cost2, cost3, cost4,and cost5andinsert job i into thepositionwithminimal insertioncost. C5.Else ifCondition5 issatisfied Initial theperiod indexkk′=argmink′∈B(Ik′ ≥ ti) //Job i isprocessedwithinperiodkk’. 3.3.Else if layer3 C6. IfCondition6 issatisfied //Similarly toCondition4, itneeds tocalculate the insertioncostof severalpossiblepositionsandinsert job i into thepositionwithminimal insertioncost. C7.Else ifCondition7 issatisfied C7.1. Ifmaxk′′∈Γ { Ik′′ } > ti Initial theperiod indexkk′′=argmink′′∈Γ ( Ik′′ ≥ ti ) //Job i isprocessedwithinperiodkk”. C7.2.Else //Job i traversesallnon-fullon-peakperiodsandinsert job i into thepositionwithminimal insertioncost. 4.ComputationalResults In thissection,areal-life instancefromamachinerymanufacturingcompanyinChinaisprovided to further illustrate theMILPmodel and the proposed algorithm. Then, two sets of contrasting experimentswithrandomlygenerated instancesareconducted,aimingtoshowthegoodperformance of the algorithm.The algorithm is coded inMATLABR2015b and the experiments are runon an Intel(R)Core(TM) i7-47903.60GHzprocessorwith16GBofmemoryunder theWindows7operating system. For benchmarking, the greedy insertionheuristic algorithmproposedbyChe et al. [9] is adoptedforourcontrast tests. TheTOUelectricity tariffsusedforall instancesare those implementedinShanxiProvince,China, asgiven inTable1. It canbeseenfromTable1 that theoff-peakperiod isbetweenanon-peakperiod andamid-peakperiod,whichmeans that the actual electricitypricesmeets thefirst typeofTOU electricity tariffs.Assumethat the timehorizonstartsat8:00a.m. of thefirstday. 11
back to the  book Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
Title
Algorithms for Scheduling Problems
Authors
Frank Werner
Larysa Burtseva
Yuri Sotskov
Editor
MDPI
Location
Basel
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-3-03897-120-7
Size
17.0 x 24.4 cm
Pages
212
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Categories
Informatik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Algorithms for Scheduling Problems