Page - 17 - in Algorithms for Scheduling Problems
Image of the Page - 17 -
Text of the Page - 17 -
Algorithms 2018,11, 18
Table6.Computational results for the large-size instances.
Instance GIH2 GIH-F
n e m TECH CTH2 (s) TECF CTF (s) R
500 1.2 250.5 43,909.1 53.0 43,909.1 0.219 242.0
1.5 315.0 38,637.8 52.2 38,637.9 0.187 279.1
2.0 417.0 34,417.5 56.3 34,417.5 0.082 686.6
3.0 628.5 28,948.1 56.9 28,948.0 0.093 611.8
1000 1.2 504.0 87,500.3 244.2 87,500.3 1.802 135.5
1.5 628.5 77,598.3 230.3 77,597.0 0.873 263.8
2.0 840.0 69,199.2 294.1 69,199.2 0.432 680.8
3.0 1256.5 57,923.1 250.7 57,923.1 0.485 516.9
2000 1.2 1002.5 176,681.2 3910.8 176,680.7 15.701 249.1
1.5 1255.5 155,205.3 3114.3 155,206.2 6.503 478.9
2.0 1669.0 137,774.1 4316.2 137,774.1 3.346 1290.0
3.0 2501.7 115,661.0 1785.8 115,661.0 3.574 499.7
3000 1.2 1511.7 263,511.1 19,136.9 263,511.6 46.551 411.1
1.5 1880.0 231,954.6 14,429.7 231,954.9 25.560 564.5
2.0 2483.3 205,368.8 19,759.8 205,368.8 11.219 1761.3
3.0 3780.0 173,630.6 6571.9 173,630.6 12.432 528.6
4000 1.2 1991.7 352,975.8 59,016.2 352,977.0 107.610 548.4
1.5 2511.7 306,983.3 43,971.5 306,983.3 66.669 659.5
2.0 3335.0 275,694.8 60,539.8 275,694.8 26.281 2303.6
3.0 4986.7 231,148.4 17,014.0 231,148.4 29.728 572.3
5000 1.2 2498.3 438,717.9 136,314.9 438,718.6 168.581 808.6
1.5 3131.1 386,546.1 101,071.7 386,548.1 106.764 946.7
2.0 4161.1 341,504.3 139,122.7 341,504.3 50.931 2731.6
3.0 6257.8 291,685.7 51,471.0 291,685.7 58.821 875.0
Rule1: If tiā¤maxkāA{Ik}andkk=argminkāA{ti⤠Ik},whereargminkāA{ti⤠Ik}denotes the
minimal indexk for ti⤠Ik, then job icanbedirectly inserted into theoff-peakperiodkkandthe jobno
longer traversesall thenon-fullperiods.
Rule2: If tiā¤minkā²ā²āĪ {
Ikā²ā² }
,maxkāA{Ik}>0ormaxkā²āB{Ikā²}>0, then job inolonger traverses
on-peakperiods.
Asmentioned above,when there are no jobs that need to traverse non-full on-peakperiods,
the time complexity ofGIH-F isO(n2m) andGIH isO(n2m2). This implies thatGIH-F ism times
faster thanGIH, theoretically, and the experimentaldataof the small-size instances inTable 5 can
verify thisconclusion. FromTable5,wecansee thatRandmarealmost thesameorderofmagnitude.
In addition, all the small-size instances canbe solvedwithin0.02 susingGIH-F.Byand large, the
computationtimeincreasesslightlywithn,andparameterehasnosigniļ¬canteffectonthecomputation
time,which indicates that thealgorithmisquitestable. Inaddition, it canbeseenfromTable5 that
the smaller the parameter e (i.e., the shorter themakespan), the higher the total electricity cost.
Therefore, inaspeciļ¬c instance, thedecision-makerscanobtainasetofParetosolutionsbyadjusting
themakespan,andtheycanchooseasolutionaccordingtoactualneeds.What ismore, it isamazing
to see that our algorithmnotonlygreatly improves computation speedbut also further improves
theaccuracy.
Table6showsthatthenumberofperiodsincreasesquicklywiththenumberof jobs. Sincethetime
complexityofGIHisO(n2m2), itās runtimewill risesharply. Toensure thefeasibilityof thecontrast
tests,weaddtworules (i.e.,Rule1andRule2) to improvethecomputationalspeedofGIHwithout
changingthecomputationalaccuracy.
Intuitively, theCTF is signiļ¬cantly less thanCTH2, whichmeans that the designed ļ¬ltering
mechanism is efļ¬cient in dealing with large-scale instances. Specially, as n = 5000 and e = 2.0,
ouralgorithmcansolvearandomlygenerated instancewithin1minandmaintain thesameaccuracy
asGIH2, while GIH2 takes nearly 39 h, let aloneGIH.Note thatwhen e is set as 3.0, the given
makespanisveryabundantandthereisnojobprocessedwithinanon-peakperiodinourexperimental
17
back to the
book Algorithms for Scheduling Problems"
Algorithms for Scheduling Problems
- Title
- Algorithms for Scheduling Problems
- Authors
- Frank Werner
- Larysa Burtseva
- Yuri Sotskov
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-120-7
- Size
- 17.0 x 24.4 cm
- Pages
- 212
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Categories
- Informatik
- Technik