Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Page - (000055) -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - (000055) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples

Image of the Page - (000055) -

Image of the Page - (000055) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples

Text of the Page - (000055) -

6.1 CostFunction 47 Thetransferfunctionforanimpulseisequaltoone.Thus,thetransferfunctionsfor disturbanceandnoise inputsare, respectively,D(s)=μandN(s)=1.Asystem’s responsetoaninputissimplytheproductoftheinputandthesystemtransferfunction. Forexample, thefirst terminEq.6.3becomes ||D(s)Gud(s)||22 =μ2||Gud(s)||22, and the full cost functionbecomes J = μ2||Gud(s)||22+μ2ρ2||Gηd(s)||22 +||Gun(s)||22+ρ2||Gηn(s)||22. (6.4) UsingthesensitivityexpressionsinEq.6.2,wecanwritethisexpressionmoresimply as J =||CS||22+(μ2+ρ2)||T||22+μ2ρ2||PS||22. (6.5) 6.2 OptimizationMethod ThissectionfollowsQiuandZhou’s(2013)optimizationalgorithm.Theircostfunc- tion in thefinal equationonpage31of their book is equivalent tomycost function inEq.6.4. Optimization finds the controller,C(s), that minimizes the cost function. We search for optimal controllers subject to the constraint that all transfer functions in Eq. 6.1 are stable. Stability requires that the real component be negative for all eigenvaluesofeach transfer function. Atransferfunction’seigenvaluesaretherootsofthedenominator’spolynomial in s. For each transfer function inEq.6.1, theeigenvalues, s, areobtainedbysolution of1+P(s)C(s)=0. Weassumeafixedprocess, P, andweighting coefficients,μ andρ. Tofind the optimal controller,webeginwithageneral formfor thecontroller, suchas C(s)= q1s+q2 p0s2+ p1s+ p2 . (6.6) Weseek thecoefficients p andq thatminimize thecost function. QiuandZhou(2013)solvetheexampleinwhichP(s)=1/s2,forarbitraryvalues ofμandρ.TheaccompanyingMathematicacodedescribes thesteps in thesolution algorithm. Here, I simply state the solution. Check the article by Qiu and Zhou (2013)andmyMathematicacodefor thedetailsandforastartingpoint toapply the optimizationalgorithmtootherproblems.Thefollowingsectionapplies thismethod toanotherexampleandillustrates theoptimizedsystem’sresponsetovariousinputs. ForP =1/s2,QiuandZhou(2013)give theoptimal controller
back to the  book Control Theory Tutorial - Basic Concepts Illustrated by Software Examples"
Control Theory Tutorial Basic Concepts Illustrated by Software Examples
Title
Control Theory Tutorial
Subtitle
Basic Concepts Illustrated by Software Examples
Author
Steven A. Frank
Publisher
Springer Open
Location
Irvine
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-3-319-91706-1
Size
15.5 x 23.5 cm
Pages
114
Keywords
Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Control Theory Tutorial