Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Page - (000090) -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - (000090) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples

Image of the Page - (000090) -

Image of the Page - (000090) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples

Text of the Page - (000090) -

86 11 AdaptiveControl Controller y Process u r Adjustment mechanism Model ym Controller parameters Fig.11.1 Modelreferenceadaptivecontrol.Thegoal is toconstructacontrollersothat thesystem output,y,matchestheoutputofaspecifiedmodel,ym.Toachievethatgoal, thelowerfeedbackloop withcontroller andprocessmust together formasystemthathas thesamedynamicsas themodel. If parameters of the process are unknown, one can use measurement of the error, e= y− ym, to adaptively adjust the parameters of the controller in response to the error. Ideally, the system learnscontrollerparameterssuchthat theoutput,y,convergestomatchthetargetmodeloutput,ym. RedrawnfromFig.5.1ofÅströmandWittenmark(2008),©KarlJ.ÅströmandBjörnWittenmark oftheresponserelativetotheinputofbm/am.Figure11.2illustratesthedesigntarget response for a sinusoidal input,r. Forgivenvaluesofa andb, thecontrol input u= 1 g(y) [ k∗1 f(y)+k∗2y+w∗r ] k∗1 =− a b k∗2 =− am b w∗ = bm b (11.3) transforms theprocessmodel inEq.11.1 into the targetmodel inEq.11.2. If the parametersa andb are unknown, then the input,u,must be based on the estimatesfork1(t),k2(t),andw(t).Theestimatesareupdatedbyanadaptiveprocess in response to the error difference between systemandmodel output, e= y− ym. Thedynamicsof theerror are e˙= y˙− y˙m. Toobtainanexpressionfor e˙,weneedamodifiedformof y˙ thatcontainsonlythe knownparametersam andbm andtheestimatesk1,k2,andw.Thefirststepexpresses theprocessdynamics inEq.11.1byaddingandsubtractingb [ k∗1 f(y)+k∗2y+w∗r ] andusing the identitiesbk∗1 =−a andbk∗2 =−am andbw∗ =bm, yielding y˙=−amy+bmr +b[−k∗1 f(y)−k∗2y−w∗r+ug(y) ] . Write the tracking errors as k˜1= k1−k∗1 and k˜2 = k2−k∗2 and w˜=w−w∗. The errordynamicscan thenbewrittenas
back to the  book Control Theory Tutorial - Basic Concepts Illustrated by Software Examples"
Control Theory Tutorial Basic Concepts Illustrated by Software Examples
Title
Control Theory Tutorial
Subtitle
Basic Concepts Illustrated by Software Examples
Author
Steven A. Frank
Publisher
Springer Open
Location
Irvine
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-3-319-91706-1
Size
15.5 x 23.5 cm
Pages
114
Keywords
Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Control Theory Tutorial