Page - (000104) - in Control Theory Tutorial - Basic Concepts Illustrated by Software Examples
Image of the Page - (000104) -
Text of the Page - (000104) -
13.5 SmithPredictor 101
To obtain robust stability, we can design a controller,C, under the assumption
that themodelingerror iszero, M =0.Forexample,wecanusethemethodsfrom
theearlierchapterStabilization toobtainagoodstabilitymarginforC relativetoP∗.
Thenwecanexplicitlyanalyzethesetofmodelingerrors, M , forwhichourrobust
controllerwill remain stable. A designwith a good stabilitymargin also typically
providesgoodperformance.
13.6 Derivationof theSmithPredictor
ThederivationofEq.13.5beginswith the transfer functionsobtaineddirectly from
Fig.13.4 forvariousoutputs
Y =ECPe−δs
Y∗ =ECP∗ =Y P ∗
Pe−δs
Ym =ECP∗e−δ∗s =Y P ∗e−δ∗s
Pe−δs
witherror input
E =R−Y −Y∗+Ym
=R−Y(1+ P ∗
Pe−δs − P ∗e−δ∗s
Pe−δs )
=R−Y 1
Pe−δs (
P∗+ M)
with
M =Pe−δs −P∗e−δ∗s.
Substituting theexpression forE into theexpression forY yields
Y =CPe−δs[R−Y 1
Pe−δs (
P∗+ M)].
The system response,Y, to an input,R, isG =Y/R, whichweobtain bydividing
both sidesof theprior equationbyR, yielding
G =CPe−δs −GC(P∗+ M),
fromwhichweobtain
G = (
CP
1+C (P∗+ M) )
e−δs,
Control Theory Tutorial
Basic Concepts Illustrated by Software Examples
- Title
- Control Theory Tutorial
- Subtitle
- Basic Concepts Illustrated by Software Examples
- Author
- Steven A. Frank
- Publisher
- Springer Open
- Location
- Irvine
- Date
- 2018
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-319-91706-1
- Size
- 15.5 x 23.5 cm
- Pages
- 114
- Keywords
- Control Theory --- Engineering Design Tradeoffs, Robust Control, Feedback Control Systems, Wolfram
- Category
- Informatik