Page - 12 - in Document Image Processing
Image of the Page - 12 -
Text of the Page - 12 -
J. Imaging 2018,4, 68
Figure3.Visualcomparisonofbleed-throughrestoration. (a) inputdegradedimage; (b)handlabeled
ground truth image; (c) restored imageby [16]; (d) restored imageby [7]; (e) restored imageby the
proposedmethod.
Figure4. Inkbleed-throughremoval inacolour image: input image(top)andtherestoredimageusing
theproposedmethod(bottom).
6.Conclusions
This paper presents a novel and general framework for high quality image restoration of
documents affectedbybleed-through. Weuse thebleed-through identificationmethodpresented
in [33] in conjunctionwith group based sparse image inpainting, in order to obtain a non-blind
document bleed-through the removalmethod. Thenon-stationary linearmodel in [33] efficiently
locates thebleed-throughpattern in recto-verso imagepairs, but lacksapropermethod to replace
theunwantedbleed-throughpixels. Finding abefittingfill-in for thedegradedpixels is a crucial
12
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik