Page - 47 - in Document Image Processing
Image of the Page - 47 -
Text of the Page - 47 -
J. Imaging 2018,4, 57
LetTbethe featurevector representingthe local texture:
T= func( Icen, I0, I1,..., IM−1),
where Icen and Ip for p∈ {0, 1, ...,M−1} representgrayvaluesof thecenterpixelandtheneighboring
pixels, respectively. Toachievegrayscale invariance, the textureoperator ismodifiedtoconsider the
dif ference in intensitiesof thecenterpixelanditsneighbors:
T= func( I0− Icen, I1− Icen, ..., IM−1− Icen).
Furthermore, toachievearobustnessagainst thescalingofgrayscale,only thesignsofdifference
in intensitiesareconsidered:
T= func( f(I0− Icen), f(I1− Icen), ..., f(IM−1− Icen)).
Here,
f(x)= {
1, ifx≥0,
0, ifx<0. (2)
Finally, theLBPoperator, for thecenterpixel pcenhaving intensityvalue IcenwithMneighbors
(X1,X2,...,XM)of intensities (I1, I2,..., IM), respectively, canbedefinedbelow:
LBP(M,R)(xcen,ycen)= M
∑
n=1 f(In− Icen)×2n−1. (3)
LBPcreatesanM-bit string.Hence, forM=8, thevaluesofLBP(M,R)(xcen,ycen)canvaryfrom0
to255. Theprocess isdepicted inFigure1.
Figure 1. Illustration of LBP value generation for a 3× 3 gray image window, where M = 8,
andradius=1.
Inorder toefficientlyextract texture featuresofvariouscomplexities, theoriginalLBPoperator
hasbeenmodifiedtogenerateanumberofvariants.
2.1. ImprovedLBP(ILBP)
Themaindifferencebetween ILBP [23] and simpleLBP is that, insteadof the intensityof the
centerpixel, themeanintensityvalueofall thepixels, includingthecenterpixel, isusedtofindthe
intensitydifferenceduringbinarypatterncomputation. Inaddition to that,whilecomputingILBP, the
intensityof thecenterpixel isalsocomparedwithmeanintensity. ILBPis formallydefinedas follows:
ILBP(M,R)(xcen,ycen)= M−1
∑
n=0 f(In− Imean)×2n+ f(Icen− Imean)×2M, (4)
47
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik