Page - 59 - in Document Image Processing
Image of the Page - 59 -
Text of the Page - 59 -
J. Imaging 2018,4, 57
17. Garz,A.;Sablatnig,R.;Diem,M.Layoutanalysis forhistoricalmanuscriptsusingsift featuresDocument.
In Proceedings of the 2011 International Conference onDocumentAnalysis andRecognition (ICDAR),
Beijing,China,18–21September2011.
18. Garz,A.;Sablatnig,R.;Diem,M.UsingLocalFeatures forEfficientLayoutAnalysisofAncientManuscripts.
InProceedingsof theEuropeanSignalProcessingConference,Barcelona,Spain,29Auguat–2September
2011;pp. 1259–1263.
19. Wang,D.;Nihari, S.N.Classificationofnewspaper imageblocksusingtextureanalysis.Comput.Vis.Graph.
ImageProcess1989,47, 327–352.
20. Belaïd,A.;Santosh,K.C.;d’Andecy,V.P.HandwrittenandPrintedTextSeparation inRealDocument. arXiv
2013, arXiv:1303.4614.
21. Nanni, L.; Lumini, A.; Brahnam, S. Survey on LBP based texture descriptors for image classification.
ExpertSyst.Appl.2012,39, 3634–3641.
22. Ojala,T.;Pietikainen,M.;Maenpaa,T.Multiresolutiongray-scaleandrotation invariant textureclassification
with localbinarypatterns. IEEETrans. PatternAnal.Mach. Intell. 2002,24, 971–987.
23. Jin, H.; Liu, Q.; Lu, H.; Tong, X. Face detection using improved LBP under Bayesian framework.
InProceedingsof theThirdInternationalConferenceonImageandGraphics (ICIG), HongKong,China,
18–20December2004;pp. 306–309.
24. Heikkila,M.;Pietikainen,M.Atexture-basedmethodformodelingthebackgroundanddetectingmoving
objects. IEEETrans. PatternAnal.Mach. Intell. 2006,28, 657–662.
25. Harwood,D.;Ojala, T.; Pietikäinen,M.;Kelman, S.;Davis, L.Texture classificationbycenter-symmetric
auto-correlation,usingKullbackdiscriminationofdistributions.PatternRecognit. Lett. 1995,16, 1–10.
26. Ojala,T.;Pietikäinen,M.;Harwood,D.Acomparativestudyof texturemeasureswithclassificationbasedon
featureddistributions.PatternRecognit. 1996,29, 51–59.
27. Das, B.; Bhowmik, S.; Saha,A.; Sarkar,R.AnAdaptiveForeground-BackgroundSeparationMethod for
EffectiveBinarizationofDocument Images. InEighth InternationalConferenceonSoftComputingandPattern
Recognition; Springer:Cham,Switzerland,2016.
28. Witten, I.H.; Frank, E.;Hall,M.A.; Pal, C.J. TheWEKAWorkbench. OnlineAppendix forDataMining:
PracticalMachineLearningTools andTechniques, 4thed.;MorganKaufmann: Burlington,MA,USA,2016.
29. Sah, K.A.; Bhowmik, S.; Malakar, S.; Sarkar, R.; Kavallieratou, E.; Vasilopoulos, N. Text and non-text
recognitionusingmodifiedHOGdescriptor. InProceedingsof the IEEECalcuttaConference (CALCON),
Kolkata, India,2–3December2017;doi:10.1109/CALCON.2017.8280697
30. Obaidullah, S.M.; Santosh,K.C.;Halder, C.; Das,N.; Roy,K.Automatic Indic script identification from
handwrittendocuments: Page,block, lineandword-levelapproach. Int. J.Mach. Learn. Cyber2017, 1–20,
doi:10.1007/s13042-017-0702-8
c©2018bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
59
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik