Page - 69 - in Document Image Processing
Image of the Page - 69 -
Text of the Page - 69 -
J. Imaging 2018,4, 6
We can see from thedisplayed results inTable 6 that the computation cost of ourdeveloped
holistic system is verypractical. With lexical reduction,wemanaged to reduce the run timebya
factorof1000andaonepagewithaveragenumberof250wordscanbecomputed inaverage time
of 1.2 s compared to1 s/page forSakhr system, 2.3 s/page forNovoDynamicsand3.5 s/page for
ABBYsystem.
7.ConclusionsandFutureWork
Theholisticapproachesprovideeffectivesolutionsforthechallengesofcursivescriptsrecognition
suchasArabicOCR.Themaindrawbackofsuchapproaches is its complexityandheavycomputation
requirementespecially for largevocabulary tasks. In thispaper,we introducedaholisticArabicOCR
approach that is computationally efficient. A lexicon reduction techniquebasedon clustering the
similar shapewords isutilized to reduce thewordrecognition time. Thepresentedsystemmakes
useofahybridof severalholistic features that combineglobalword levelDCTbased featuresand
localblockbasedfeatures.Usingthis typeof features, thesystemachievedOmni-fontperformance
withsizeandfont independence.Also, thesuggestedsystemhasaflexiblearchitecture to integrate
languagemodellingconstraintsbyusingasecondrescoringpass for the topn-bestwordhypotheses.
Theproposedsystemhasbeentestedusingdifferent setsof1152wordswith threedifferent fonts
and four font sizes andhasachieved99.3%WRR. It alsohasbeen testedusing sets of 2730words
of recent computerized book’s text and has attained more than about 84.8% WRR. Results of
the holistic proposed systemhave been comparedwith known commercialArabicOCR systems
providedbythe largest internationalandlocalcompanies,andtheresultswerepromising. In future
work,wewill investigateotherholistic features likeWaveletTransform,ZernikeTransform,Hough
Transformand loci. Also,wewill investigateother lexicon reduction techniques thatbenefit from
linguistic information.
Acknowledgments: The teamwork of the “Arabic PrintedOCRSystem”projectwas funded and supported
by theNSTIP strategic technologies program in theKingdomof SaudiArabia- project no. (11-INF-1997-03).
Inaddition, theauthorsacknowledgewith thanksScienceandTechnologyUnit,KingAbdulazizUniversity for
technical support.
Author Contributions: Farhan M. A. Nashwan and Mohsen A. A. Rashwan conceived and designed the
experiments;FarhanM.A.Nashwanperformedtheexperiments;SherifM.AbdouandMohsenA.A.Rashwan
analyzedthedata;HassaninM.Al-Barhamtoshycontributedmaterialsandanalysis tools;FarhanM.A.Nashwan
andSherifM.Abdouwrote thepaper;AbdullahM.Moussasubstantivelyrevisedthepaper.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest. Thefundingsponsorshadnorole in thedesign
of the study; in the collection, analyses, or interpretationofdata; in thewritingof themanuscript, and in the
decisiontopublish theresults.
References
1. Khorsheed,M.;Al-Omari,H.RecognizingcursiveArabic text:Usingstatistical featuresandinterconnected
mono-HMMs. In Proceedings of the 4th International Congress on Image and Signal Processing,
Shanghai,China,15–17October2011;Volume5,pp.1540–1543.
2. Abd, M.A.; Al Rubeaai, S.; Paschos, G. Hybrid features for an Arabic word recognition system.
Comput. Technol.Appl.20123, 685–691.
3. Amara,M.; Zidi, K.; Ghedira, K.An efficient andflexibleKnowledge-basedArabic text segmentation
approach. Int. J.Comput. Sci. Inf. Secur. 2017,15, 25–35.
4. Radwan,M.A.;Khalil,M.I.;Abbas,H.M.Neuralnetworkspipeline forofflinemachineprintedArabicOCR.
NeuralProcess. Lett. 2017, 1–19,doi:10.1007/s11063-017-9727-y.
5. El rube’, I.A.;ElSonni,M.T.;Saleh,S.S.PrintedArabicsub-wordrecognitionusingmoments.WorldAcad.
Sci. Eng. Technol. 2010,4, 610–613.
6. MadhvanathS.;Govindaraju,V.Theroleofholisticparadigms inhandwrittenwordrecognition. IEEETrans.
PatternAnal.Mach. Intell. 2001,23, 149–164.
69
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik