Page - 74 - in Document Image Processing
Image of the Page - 74 -
Text of the Page - 74 -
J. Imaging 2018,4, 37
2.1.DPDQC:DesignofDQCUsingDynamicProgramming
Given a set of classifiers for frequent classesWw = {w1,w2, . . . ,wN} and a query vectorXq,
thequeryclassifierwq isdesignedasapiecewise fusionofparts (n-grams) fromtheavailableclassifiers
fromWw. Let p be the number of portions to be selected for computing the query classifierwq.
These portions are characterized by the sequence of indices a1, . . . ,ap+1. The classifier synthesis
problemis formulatedas thatofpickinguptheoptimalsetofclassifiers{ci}andthesetofsegment
indices{ai} such that{ai} formamonotonically increasingsequenceof indices. This involves the
followingoptimization:
max
{ai},{ci} p
∑
i=1 ai+1
∑
k=ai wkciX k
q (1)
wherewci correspondstotheweightvectorof thec th
i classifierthatwechooseandtheinnersummation
applies the indexk in therange (ai,ai+1) touse thekth componentwkci fromtheclassifier ci. The index
i in theouter summation refers to the cutportions, and p is the total numberofportionsweneed
toconsider.
In [12],Malisiewiczetal. proposedthe ideaofexemplarSVEN(ESVM)whereaseparate (SVM)
is learnedforeachexample.Almazanetal. [25]useESVMsforretrievingwordimages. ESVMsare
inherentlyhighly tunedto its correspondingexample. Givenaquery, it canretrievehighlysimilar
wordimages. Thisconstrains therecall,unlessonehas largevariationsof thequerywordavailable.
AnotherdemeritofESVMis the largeoverall trainingtimesinceaseparateSVMneeds tobe trained
foreachexemplar.Oneapproachtoreducingtrainingtimeis tomakethenegativeexamplemining
stepofflineandselectingacommonsetofnegativeexamples [26].Gharbietal. [27]provideanother
alternative for fast trainingofexemplar SVM inwhich thehyperplanebetweenasinglepositivepoint
and a set of negative points can be seen as finding the tangent to themanifold of images at the
positivepoint.
Givenaqueryq, thesimilarvectorsinthedatasetareidentifiedbyadoptingtheESVMformulation
proposedbyGharbietal. [27]whichyieldsanapproachequivalent toLinearDiscriminantAnalysis.
It involves a fast computation of theweight vector by adopting a parametric representation of
the negative examples approximated as aGaussianmodel on the complete set of trainingpoints.
Thenormal to theGaussianat thequerypointq is computedusingthecovariancematrix toyield the
weightvectorwq as follows:
wq=Σ−1(μq−μ0) (2)
whereΣandμ0 are thecovarianceandmeancomputedover theentiredataset. SinceΣandμ0 are
commonforalldata,findingwq requiresfindingthemeanvectorμqof theclass towhichthequeryq
belongs to. Letusdefinethesetofclassmeanvectors for the frequentclassesasWμ={μ1, . . . ,μN}.
Themeanvectorμq for theclassof thequeryq is computedbymakinguseofappropriatecutportions
fromthemeanvectorsof the frequentclasses.Optimizing(1) forvariable lengthcutportionsentails
highcomputationalcomplexity. Therefore, insteadofmatchingvariable-lengthn-grams, themethod
dividesXq into pnumberoffixedlengthportions.
1. Theclassmeanvectorsof themost frequent1000classesareconcatenated.
2. Now,eachquerycutportionXkq is searchedin theconcatenatedmeanvectorusingsubsequence
dynamic timewarping[28]
3. Themostsimilar segment in theconcatenatedmeanvector is takenas thecorrespondingportion
of thequeryclassmeanμkq.
4. Theconcatenationof thesequeryclassmeancutportionsμkq synthesizes thequeryclassmean
μq=[μ1q, . . . ,μ p
q].
SinceDTWiscomputationallyslow,applyingsubsequenceDTW, in thiscase, is computationally
expensive.
74
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik