Page - 76 - in Document Image Processing
Image of the Page - 76 -
Text of the Page - 76 -
J. Imaging 2018,4, 37
ofoptimalalignments.Now, theDTWdistance isapproximatedas thesumof theEuclideandistances
over theglobalprincipalalignments.
FastApprxDTW(x1,x2)= ∑
π∈GX Euclidπ(x1,x2) (3)
whereGX is the set of global principal alignments for the givendataX andEuclidπ(x1,x2) is the
Euclideandistancebetweenx1 andx2 over thealignmentπ.Notice that theDTWdistancebetween
twosamples is theEuclideandistance (grounddistance)over theoptimalalignment.
Figure2.Thetopalignmentsbetweenfewsamples from2differentclasses.Here,X-axis is the length
of thesamples fromclass1andY-axis is the lengthof thesamples fromclass2.
ToshowtheperformanceofFastApprxDTW[20],wehavecomparedwithnaiveDTWdistanceand
Euclideandistance forwordretrievalproblem.Here, thesedistancemeasuresareusedforcomparing
wordimagerepresentations. Thedatasetcontains imagesfromthreedifferentwordclasses. Theresults
aregiven inTable1.Nearestneighbor isusedforretrievingthesimilarsamples. Theperformance is
measuredbymeanAveragePrecision (mAP).Fromtheresults,wecanobserve thatFastApprxDTWis
comparable tonaiveDTWdistanceanditperformsbetter thanEuclideandistance.
Table1.ThecomparisonoftheperformanceofDTWdistance,FastApprxDTWandEuclideandistance
asasimilaritymeasure forawordretrievalproblem.
DTWDistance FastApprxDTW Euclidean
mAPscore 0.96 0.94 0.82
4.QuerySpecificFastDTWDistance
InFastapproximateDTWdistance [20] (Section3), theglobalprincipalalignmentsarecomputed
fromthegivendata.Here,noclass information isusedwhilecomputingthealignmentsandalso these
alignmentsarequery independent, i.e., query information isnotusedwhile computing theglobal
principalalignments. In thissection,weintroduceQueryspecificDTWdistance,which iscomputed
usingqueryspecific (global)principal alignments. TheproposedQueryspecificDTWdistancehas
beenfoundtogiveamuchbetterperformancewhenusedwith thedirectqueryclassifier.
LetX bethegivendataandall thesamplesarescaledtoafixedsize. Let{C1,C2, . . . ,CN}bethe
mostfrequentNclassesfromthedataandμ1, . . . ,μNbetheircorrespondingclassmeans. Thematching
processusingthequeryspecificprincipalalignments isas follows:
(i) Divide each sample from the frequent classes to a fixed number p of equal size portions.
Let xi1, . . . ,xi|ci| be the samples (sequences) from the ith class ci, where |ci| is the number of
samples in theclass ci. Thecutportions for theclassmeansμi aredenotedasμi1, . . . ,μ i
p,where
76
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik