Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 76 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 76 - in Document Image Processing

Image of the Page - 76 -

Image of the Page - 76 - in Document Image Processing

Text of the Page - 76 -

J. Imaging 2018,4, 37 ofoptimalalignments.Now, theDTWdistance isapproximatedas thesumof theEuclideandistances over theglobalprincipalalignments. FastApprxDTW(x1,x2)= ∑ π∈GX Euclidπ(x1,x2) (3) whereGX is the set of global principal alignments for the givendataX andEuclidπ(x1,x2) is the Euclideandistancebetweenx1 andx2 over thealignmentπ.Notice that theDTWdistancebetween twosamples is theEuclideandistance (grounddistance)over theoptimalalignment. Figure2.Thetopalignmentsbetweenfewsamples from2differentclasses.Here,X-axis is the length of thesamples fromclass1andY-axis is the lengthof thesamples fromclass2. ToshowtheperformanceofFastApprxDTW[20],wehavecomparedwithnaiveDTWdistanceand Euclideandistance forwordretrievalproblem.Here, thesedistancemeasuresareusedforcomparing wordimagerepresentations. Thedatasetcontains imagesfromthreedifferentwordclasses. Theresults aregiven inTable1.Nearestneighbor isusedforretrievingthesimilarsamples. Theperformance is measuredbymeanAveragePrecision (mAP).Fromtheresults,wecanobserve thatFastApprxDTWis comparable tonaiveDTWdistanceanditperformsbetter thanEuclideandistance. Table1.ThecomparisonoftheperformanceofDTWdistance,FastApprxDTWandEuclideandistance asasimilaritymeasure forawordretrievalproblem. DTWDistance FastApprxDTW Euclidean mAPscore 0.96 0.94 0.82 4.QuerySpecificFastDTWDistance InFastapproximateDTWdistance [20] (Section3), theglobalprincipalalignmentsarecomputed fromthegivendata.Here,noclass information isusedwhilecomputingthealignmentsandalso these alignmentsarequery independent, i.e., query information isnotusedwhile computing theglobal principalalignments. In thissection,weintroduceQueryspecificDTWdistance,which iscomputed usingqueryspecific (global)principal alignments. TheproposedQueryspecificDTWdistancehas beenfoundtogiveamuchbetterperformancewhenusedwith thedirectqueryclassifier. LetX bethegivendataandall thesamplesarescaledtoafixedsize. Let{C1,C2, . . . ,CN}bethe mostfrequentNclassesfromthedataandμ1, . . . ,μNbetheircorrespondingclassmeans. Thematching processusingthequeryspecificprincipalalignments isas follows: (i) Divide each sample from the frequent classes to a fixed number p of equal size portions. Let xi1, . . . ,xi|ci| be the samples (sequences) from the ith class ci, where |ci| is the number of samples in theclass ci. Thecutportions for theclassmeansμi aredenotedasμi1, . . . ,μ i p,where 76
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing