Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 77 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 77 - in Document Image Processing

Image of the Page - 77 -

Image of the Page - 77 - in Document Image Processing

Text of the Page - 77 -

J. Imaging 2018,4, 37 each cut portion is of length d. Similarly, divide the query Xq into samenumber p of fixed lengthportions. (ii) Foreachclass, compute theglobalprincipalalignments foreachcutportionseparately. Theseare the cut specific principal alignments for the class. For ith class and jth cut portion the cut specific principal alignments are computed from {xji1, . . .x j i|ci|} and these are denoted as G j i. Thesealignmentsarecomputedforall thecutportions foreachclass. (iii) Thefinalstepcomputes thecutspecificprincipalalignments for thegivenqueryXq as follows. ForeachcutportionofXq,wecomputetheDTWdistance(Euclideandistanceover thecutspecific principal alignments)with the corresponding cut portions of all the classmeans using their correspondingcutspecificprincipalalignments. Thedistancebetweenthe jthcutportionofXq i.e.,Xjq andthe jthcutportionof the ithclassmeani.e.,μ j i isdenotedas Disji= ∑ π∈Gji Euclidπ(X j q,μ j i) (4) ForeachcutportionofXq,wecompute theminimumdistancemeancutportionoverall theclass meanvectors. Thecorrespondingcutspecificprincipalalignmentsof theclosestmatchingmean cutportionsaretakenasthecutspecificprincipalalignmentsof thequerycutportion. Inaddition, thecorrespondingclassmeancutportion is takenas thematchingcutportionforconstructing thequerymean. Let the jthcutportionof thequeryhavethebestmatchwith the jthcut-portion of theclasswith index c. c= argmin i Disji (5) Here theminimumdistance iscomputedoverall the frequentclasses.Wethushave GjXq ←−G j c and μ j q←−μjc (6) HereGjXq is thecutspecificprincipalalignments for the jthcutportionofXq. Together, all thesequerymeancutportionsgive thequeryclassmean. Thequeryclassmean μq isgivenasμq=(μ1q,μ2q, . . . ,μ p q). Thisqueryclassmeanμq is thenusedas inEquation (2) to compute theLDAweightwq (queryclassifierweight). Thequeryspecific (QS)DTWdistancebetween thequeryXq andasampleX fromthedata is givenas dtw qs (Xq,X)= p ∑ i=1 dtwGiXq (Xiq,X i) (7) where p is thenumberofcutportions. Figure3showsall theprocessingstagesof thenearestneighborDQC. Tosummarize,wegenerate query specificprincipal alignments on theflyby selecting and concatenating the global principal alignmentscorrespondingtothesmallerngrams (cutportions).Ourstrategy is tobuildcut-specific principal alignments for themost frequent classes; these are theword classes thatwill bequeried more frequently. Thesecut-specificprincipalalignmentsare thenusedtosynthesize thequeryspecific principalalignments (seeFigure4). Theresultsdemonstrate thatourstrategygivesgoodperformance forqueries fromboththe frequentwordclassesandrarewordclasses. 77
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing