Page - 82 - in Document Image Processing
Image of the Page - 82 -
Text of the Page - 82 -
J. Imaging 2018,4, 37
5.6. Results onGeorgeWashingtonDataset
TheGeorgeWashington(GW)dataset [31]contains4894wordimages from1471wordclasses.
This isoneof thepopulardataset forwordimages.WeappliedourproposedmethodofDQCusingQS
DTWforwordretrievalontheGWdataset. Table6providescomparativeresults forsevenmethods.
Experimentsarerepeatedfor100randomqueriesandtheaverageover theseresultsarereported in
the table.Wecanobserve that for theDQCtheproposedQSDTWgivesbetterperformance thanDTW.
Wecanalsoobserve that for thenearestneighborclassifier,QSDTWdistance isperformingslightly
superior to theDTWdistanceandFastapproximateDTWdistance. Thesuperiority isbecauseof the
principalalignmentswhicharequeryspecific.
Table6.RetrievalperformanceontheGeorgeWashington(GW)dataset. TheDQCmakesuseof top
800frequentclasses for indexingthecut-portions.
Dataset mAPUsingNearestNeighbour mAPUsingDQC
DTW FastApprxDTW [20] QSDTW Euclidean sDTW FastDTW [30] QSDTW
GW 0.51 0.50 0.52 0.32 0.62 0.63 0.70
5.7. Setting theHyperparameters
Theproposedmethodhasfewhyperparameters, like the lengthof thecutportionandthenumber
ofcutspecificprincipalalignments. For tuningtheseparameters,werandomlychoose100queries for
eachdatasetandvalidate theperformanceover thesequeries.Queries includedin thevalidationset
arenotusedforreportingthefinal results.
InTable7,wereporttheeffectofvaryingthecutportionlengthonretrievalperformance. ThemAP
score is less forsmallercutportion length. In thiscase, the learnedalignmentsarenotcapturingthe
desiredcorrelations. Thishappensbecause theoccurrenceofsmallercutportions isveryfrequent in
thewordimages. For lengthmorethan30, themAPisagaindecreased. This isbecausetheoccurrences
of largercutportionsarerare.Cutportion lengths in therangeof10 to20givebetter results. In this
case, thecutportionsaregoodenoughtoyieldglobalprincipalalignments thatcandistinguishthe
differentwordimages.
Table 7. The table shows the change in retrieval performancewith the change in the lengthof cut
portionoverall thedatasets (D1,D2,D3).Here l is the lengthof thecutportion.
l D1 D2 D3
1 0.81 0.78 0.7
10 0.86 0.83 0.74
20 0.86 0.82 0.75
30 0.82 0.77 0.72
Weassessedtheeffectofvaryingthenumberofcut-specificprincipalalignmentsontheretrieval
performanceonthe threedatasetsandtheresultsaregiven inTable8. It is seenthat theperformance
degrades forall thedatasetswhenthenumberofalignments is chosenas30. Thiscanbeattributedto
someredundantalignmentsgetting includedin thesetofprincipalalignments. Increasing thenumber
ofalignments from10to20 improvesperformancefordatasetD1,buthasnoeffectontheperformance
fordatasetsD2andD3. Therefore,wecanconcludethatrestrictingthenumberofprincipalalignments
in therange10 to20wouldgivegoodresults. Inallourexperiments,weset thenumberofcut-specific
principalalignmentsas10.
82
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik