Page - 83 - in Document Image Processing
Image of the Page - 83 -
Text of the Page - 83 -
J. Imaging 2018,4, 37
Table8. Retrievalperformanceon the3datasetsD1,D2andD3forvaryingnumberof cut specific
principalalignments.
NumberofCutSpecific
PrincipalAlignments mAPforDifferentDatasets
D1 D2 D3
10 0.92 0.89 0.81
20 0.93 0.89 0.81
30 0.91 0.88 0.78
5.8. ComputationTime
Table 9 gives the computational time complexity for themethods based on DTW. Themain
computation involved in theuseofQSDTWis thatof computing thecutspecificprincipalalignments
for the frequentclasses. Figure5showsthe timeforcomputingthecutspecificprincipalalignments
for the three datasets. The computation of these cut specific principal alignments can be carried
out independently for all the classes. Sincewecancompute theseprincipal alignments inparallel
with eachother, theproposedQSDTWscaleswellwith thenumberof samples compared toFast
ApprxDTW[20].
Figure5.Computation timeforcomputing thecut specificprincipalalignments forall thedatasets.
It includes thecomputationofcutspecificprincipalalignments forall the frequentclassesoverall the
cutportions.
Table9.ComputationalcomplexitiesofDTW-basedmethodsfordistancecomputation.Heren is the
lengthof thecut-portionof the featurevector.
Methods sDTW FastApprxDTW [20] FastDTW [30] QSDTW
ComputationalComplexity O(n2) O(n) O(n) O(n)
Unlike the case ofQSDTW,where the principal alignments are computed for the small cut
portions, in Fast Apprx DTW, the principal alignments are computed for the full word image
representation. Further, inFastApprxDTW,theprincipalalignmentsarecomputedfromtheentire
dataset,unlike thecaseofQSDTWinwhich theprincipalalignmentsarecomputedfor the individual
classes. For thesereasons,FastApprxDTWiscomputationallyslowercomparedto theQSDTW.
Foragivendataset, computingthecutspecificprincipalalignments for the frequentclasses isan
offlineprocess.Whenperformingretrieval foragivenquery,DQCinvolvescomputingthequerymean
bycomposing together thenearest cutportions fromthemeanvectorsof frequent classes. Further,
thequeryspecificprincipalalignmentsarenotexplicitlycomputedbutratherconstructedusingthe
cut-specificprincipalalignmentscorrespondingto thenearestcutportions.Once thequeryspecific
principalalignmentsareobtained,computationofQSDTWinvolvescomputingtheEuclideandistance
(usingthequeryspecificprincipalalignments)with thedatabase images.
83
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik