Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 83 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 83 - in Document Image Processing

Image of the Page - 83 -

Image of the Page - 83 - in Document Image Processing

Text of the Page - 83 -

J. Imaging 2018,4, 37 Table8. Retrievalperformanceon the3datasetsD1,D2andD3forvaryingnumberof cut specific principalalignments. NumberofCutSpecific PrincipalAlignments mAPforDifferentDatasets D1 D2 D3 10 0.92 0.89 0.81 20 0.93 0.89 0.81 30 0.91 0.88 0.78 5.8. ComputationTime Table 9 gives the computational time complexity for themethods based on DTW. Themain computation involved in theuseofQSDTWis thatof computing thecutspecificprincipalalignments for the frequentclasses. Figure5showsthe timeforcomputingthecutspecificprincipalalignments for the three datasets. The computation of these cut specific principal alignments can be carried out independently for all the classes. Sincewecancompute theseprincipal alignments inparallel with eachother, theproposedQSDTWscaleswellwith thenumberof samples compared toFast ApprxDTW[20]. Figure5.Computation timeforcomputing thecut specificprincipalalignments forall thedatasets. It includes thecomputationofcutspecificprincipalalignments forall the frequentclassesoverall the cutportions. Table9.ComputationalcomplexitiesofDTW-basedmethodsfordistancecomputation.Heren is the lengthof thecut-portionof the featurevector. Methods sDTW FastApprxDTW [20] FastDTW [30] QSDTW ComputationalComplexity O(n2) O(n) O(n) O(n) Unlike the case ofQSDTW,where the principal alignments are computed for the small cut portions, in Fast Apprx DTW, the principal alignments are computed for the full word image representation. Further, inFastApprxDTW,theprincipalalignmentsarecomputedfromtheentire dataset,unlike thecaseofQSDTWinwhich theprincipalalignmentsarecomputedfor the individual classes. For thesereasons,FastApprxDTWiscomputationallyslowercomparedto theQSDTW. Foragivendataset, computingthecutspecificprincipalalignments for the frequentclasses isan offlineprocess.Whenperformingretrieval foragivenquery,DQCinvolvescomputingthequerymean bycomposing together thenearest cutportions fromthemeanvectorsof frequent classes. Further, thequeryspecificprincipalalignmentsarenotexplicitlycomputedbutratherconstructedusingthe cut-specificprincipalalignmentscorrespondingto thenearestcutportions.Once thequeryspecific principalalignmentsareobtained,computationofQSDTWinvolvescomputingtheEuclideandistance (usingthequeryspecificprincipalalignments)with thedatabase images. 83
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing