Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 92 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 92 - in Document Image Processing

Image of the Page - 92 -

Image of the Page - 92 - in Document Image Processing

Text of the Page - 92 -

J. Imaging 2018,4, 41 itdividesthegradientbysquarerootofthemeansquarevalue. Thefirstmovingaverageofthesquared gradient isgivenby, AvtγAvt−1+(1−γ)(∇Qw)2 (6) whereγ is theforgettingfactor,∇QwisthederivativeoftheerrorandAvt−1 isthepreviousadjustment value. Theweightsareupdatedasper followingequation, wt+1wt− α√Avt ∇Qw (7) wherew is thepreviousweightandwt+1 is theupdatedweightwhereasα is theglobal learningrate. Adam(adaptivemomentestimation)[30] isanotheroptimizerforDCNNthatneedsthefirst-order gradient with small memory and computes adaptive learning rate for different parameters. Thismethodhasprovenbetter thantheRMSpropandrpropoptimizers. Therescalingof thegradient isdependentonthemagnitudesofparameterupdates. TheAdamdoesnotneedastationaryobject andworkswithsparsegradients. It alsocontainsadecayingaverageofpastgradientsMt. Mt=B1Mt−1+(1−B1)Gt (8) Vt=B2Vt−1+(1−B2)G2t (9) whereMt andVt are calculatedfirst and the secondmomentof thegradients and thesevaluesare biasedtowardszerowhenthedecayratesaresmall, andtherebybias-correctionhasdonefirstand secondmomentsestimates: Mˇt= Mt 1−Bt1 (10) Vˇt= Vt 1−Bt2 (11) AspertheauthorsofAdam,thedefaultvaluesofB1 andB2werefixedat0.9and0.999empirically. Theyhaveshownitswork inpracticeasabest choiceasanadaptive learningmethod. Adamax is anextensionofAdam,where inplaceofL2 norm,anLPnorm-basedupdaterulehasbeenfollowed. 3.3. LayerwiseTrainingDCNNModel Theworkof training is tofindthebestweight for thedeepneuralnetworkatwhich thenetwork produceshighaccuracyoraverysmallerror rate. Theoutcomeofanydeepmodelneuralnetwork somehowdepends onhow themodelwas trained and thenumber of layers. Usually, themodel is createdwith the certain number of layers, and entire layers are being involved in the training phase. In thiswork,weproposeda layer-wise trainingmodelofDCNNinspiteof involvingentire layersduringthe trainingphase torecognize thehandwrittenDevanagari characters. The layer-wise trainingmodel startswith addingone layer of convolutional andpooling layer, followedby fully connected layer and applies the back-propagation algorithm to find the weights. In the next phaseof the layer-wise trainingmodel, thenext layerof convolutional,pooling layer isaddedand thebackpropagationalgorithm is appliedwithpreviously foundweights to calculateweights for theaddedlayer. After addingentire layers, afine tuningwasperformedwith the completenetwork to adjust theentireweightsof thenetworkonavery lowlearningrate. Theback-propagationalgorithmstarts withsomerandomweights,andduringtrainingitsharpenstheweighsbyupdatingthemineachepoch. The layer-wise trainingmodelprovidesniceroughweights initiallyas thenetworkstartswithfirst layersand, further, it addsremaining layers tofindtheweights for remaining layers. The layer-wise trainingmodel is clearlyshowninFigure2. The trainingstartswithonlyonepairofconvolutional andpooling layerandfurtheranotherpair isbeingadded.Algorithm1showsthestepwiseprocedure tocreate the layer-wiseDCNNmodel. 92
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing