Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 93 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 93 - in Document Image Processing

Image of the Page - 93 -

Image of the Page - 93 - in Document Image Processing

Text of the Page - 93 -

J. Imaging 2018,4, 41 Figure2.Layer-wise trainingofdeepconvolutionalneuralnetwork. Algorithm1.Layerwise trainingofdeepconvolutionalneuralnetwork INPUT:Model,T, t,α1,α2,n\\T=(TrainData), t= (TestData), OUTPUT:TM \\TrainedModel Begin\\Addfirst layerofconvolutional layerandpooling layer Model.add (xCy,T,Relu) Model.add (xPy) Model.add (xFC) Model.add (xOU) Model.compile (optimizer) Model.fit (T, t,α1) forall I :=1: n-1step1do \\Removethe last twolayers (FC&OU) ofexistingmodel toaddnext layerofconvolutionalandpooling Model.layer.pop() Model.layer.pop() Model.add (xCy,T,Relu) Model.add (xPy) \\Againaddedfullyconnectedandoutput layer Model.add (xFC) Model.add (xOU) Model.compile (optimizer) Model.fit (T, t,α1)\\Trainedthemodelwithhigh learningrate endfor Model.fit (T, t,α2)\\Performfinetuningwith lowlearningrate end 4. ExperimentsandDiscussions Experimentswerecarriedoutontwodatabases: ISIDCHARandV2DMDCHARusingtheDCNN, layer-wiseDCNNanddifferentadaptivegradientmethods.As it ishardtodelineate thenumberof layersofDCNNthatcanproduce thebest result,weconsideredsixdifferentnetworkarchitectures (NA) ofDCNNas shown inTable 1. NA-1 contains only single convolutional-pooling layer and 500 fully connected neurons to observe the first response ofDCNN. The next, NA-2 has double thenumberof fullyconnectedneurons. Theaimis toobserve the impactofenhancement. Further, NA-3andNA-4have twoC-P layerswithvariation in thenumberofkernels toanalysis the impactof twoC-Players. The last,NA-5andNA-6havethreeC-P layers. Initially, thedifferentnetworkarchitecturesofDCNNwereappliedoneachdatabase tofindout thebestmodel for thatparticulardatabaseandthentheproposedlayer-wiseDCNNwasappliedto observe the impactof thatmodel. Themodelshavealsobeentestedwithdifferentadaptivegradient methodsto thesemethods; theyarealsounderexperiment toobserve theirperformance.Ourwork alsoshowsthe impactofdifferentadaptivegradientmethodsonrecognitionaccuracy. 93
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing