Page - 93 - in Document Image Processing
Image of the Page - 93 -
Text of the Page - 93 -
J. Imaging 2018,4, 41
Figure2.Layer-wise trainingofdeepconvolutionalneuralnetwork.
Algorithm1.Layerwise trainingofdeepconvolutionalneuralnetwork
INPUT:Model,T, t,α1,α2,n\\T=(TrainData), t= (TestData),
OUTPUT:TM \\TrainedModel
Begin\\Addfirst layerofconvolutional layerandpooling layer
Model.add (xCy,T,Relu)
Model.add (xPy)
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)
Model.fit (T, t,α1)
forall I :=1: n-1step1do
\\Removethe last twolayers (FC&OU)
ofexistingmodel toaddnext layerofconvolutionalandpooling
Model.layer.pop()
Model.layer.pop()
Model.add (xCy,T,Relu)
Model.add (xPy)
\\Againaddedfullyconnectedandoutput layer
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)
Model.fit (T, t,α1)\\Trainedthemodelwithhigh learningrate
endfor
Model.fit (T, t,α2)\\Performfinetuningwith lowlearningrate
end
4. ExperimentsandDiscussions
Experimentswerecarriedoutontwodatabases: ISIDCHARandV2DMDCHARusingtheDCNN,
layer-wiseDCNNanddifferentadaptivegradientmethods.As it ishardtodelineate thenumberof
layersofDCNNthatcanproduce thebest result,weconsideredsixdifferentnetworkarchitectures
(NA) ofDCNNas shown inTable 1. NA-1 contains only single convolutional-pooling layer and
500 fully connected neurons to observe the first response ofDCNN. The next, NA-2 has double
thenumberof fullyconnectedneurons. Theaimis toobserve the impactofenhancement. Further,
NA-3andNA-4have twoC-P layerswithvariation in thenumberofkernels toanalysis the impactof
twoC-Players. The last,NA-5andNA-6havethreeC-P layers.
Initially, thedifferentnetworkarchitecturesofDCNNwereappliedoneachdatabase tofindout
thebestmodel for thatparticulardatabaseandthentheproposedlayer-wiseDCNNwasappliedto
observe the impactof thatmodel. Themodelshavealsobeentestedwithdifferentadaptivegradient
methodsto thesemethods; theyarealsounderexperiment toobserve theirperformance.Ourwork
alsoshowsthe impactofdifferentadaptivegradientmethodsonrecognitionaccuracy.
93
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik