Page - 99 - in Document Image Processing
Image of the Page - 99 -
Text of the Page - 99 -
J. Imaging 2018,4, 41
References
1. JĂźrgen,S.Deeplearning inneuralnetworks:Anoverview.NeuralNetw. 2015,61, 85â117.
2. Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classiďŹcation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence,RI,USA,16â21 June2012.
3. Krizhevsky,A.;Sutskever, I.;Hinton,G.E. ImagenetclassiďŹcationwithdeepconvolutionalneuralnetworks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3â8December2012.
4. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE1998,86, 2278â2324. [CrossRef]
5. Navneet,D.;Triggs,B.Histogramsoforientedgradients forhumandetection. InProceedingsof theCVPR
2005IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition,SanDiego,CA,USA,
20â25 June2005;Volume1.
6. Lowe,D.G.Distinctive imagefeatures fromscale-invariantkeypoints. Int. J.Comput.Vis. 2004,60, 91â110.
[CrossRef]
7. Surinta,O.;Karaaba,M.F.;Schomaker,L.R.B.;Wiering,M.A.Recognitionofhandwrittencharactersusing
localgradient featuredescriptors.Eng.Appl.Artif. Intell. 2015,45, 405â414. [CrossRef]
8. Ojala,T.;Pietikäinen,M.;Harwood,D.Acomparativestudyof texturemeasureswithclassiďŹcationbasedon
featureddistributions.PatternRecognit. 1996,29, 51â59. [CrossRef]
9. Bay,H.;Tuytelaars,T.;vanGool,L.Surf: Speededuprobust features. InProceedingsof the9thEuropean
ConferenceonComputerVision,Graz,Austria,7â13May2006;pp.404â417.
10. Wang,X.;Paliwal,K.K.Featureextractionanddimensionalityreductionalgorithmsandtheirapplications in
vowel recognition.PatternRecognit. 2003,36, 2429â2439. [CrossRef]
11. Zeiler,M.D.;Rob,F.Visualizingandunderstandingconvolutionalnetworks. InProceedingsof theEuropean
ConferenceonComputerVision,Zurich,Switzerland,6â12September2014.
12. Simonyan,K.;Andrew,Z.Verydeepconvolutionalnetworks for large-scale imagerecognition. arXiv, 2004.
13. Jaderberg,M.;Simonyan,K.;Zisserman,A.Spatial transformernetworks. InProceedingsof theAdvances in
Neural InformationProcessingSystems,Montreal,QC,Canada,11â12December2015.
14. Cires¸an, D.; Ueli, M. Multi-column deep neural networks for ofďŹine handwritten Chinese character
classiďŹcation. In Proceedings of the 2015 International JointConference onNeuralNetworks (IJCNN),
Killarney, Ireland,12â17 July2015.
15. Sarkhel,R.;Das,N.;Das,A.;Kundu,M.;Nasipuri,M.AMulti-scaleDeepQuadTreeBasedFeatureExtraction
Methodfor theRecognitionof IsolatedHandwrittenCharactersofpopular IndicScripts.PatternRecognit.
2017,71, 78â93. [CrossRef]
16. Ahranjany, S.S.; Razzazi, F.;Ghassemian,M.H.Averyhighaccuracyhandwritten character recognition
system forFarsi/Arabicdigits usingConvolutionalNeuralNetworks. InProceedingsof the 2010 IEEE
Fifth InternationalConferenceonBio-InspiredComputing: TheoriesandApplications (BIC-TA),Changsha,
China,23â26September2010.
17. Sethi, I.K.;Chatterjee,B.MachineRecognitionofHand-printedDevnagriNumerals. IETEJ.Res. 1976,22,
532â535. [CrossRef]
18. Sharma,N.; Pal, U.; Kimura, F.; Pal, S. Recognition of off-line handwrittendevnagari characters using
quadratic classiďŹer. InComputerVision,Graphics and ImageProcessing; Springer: Berlin/Heidelberg,Germany,
2006;pp.805â816.
19. Deshpande,P.S.;Malik,L.;Arora,S.FineClassiďŹcation&RecognitionofHandWrittenDevnagariCharacters
withRegularExpressions&MinimumEditDistanceMethod. JCP2008,3, 11â17.
20. Arora, S.; Bhatcharjee,D.; Nasipuri,M.;Malik, L.A two stage classiďŹcation approach for handwritten
Devnagari characters. InProceedingsof the InternationalConferenceonComputational Intelligenceand
MultimediaApplications,Sivakasi,TamilNadu, India,13â15December2007;Volume2,pp.399â403.
21. Arora,S.;Bhattacharjee,D.;Nasipuri,M.;Basu,D.K.;Kundu,M.;Malik,L.Studyofdifferent featureson
handwrittenDevnagari character. InProceedingsof the20092ndInternationalConferenceonEmerging
Trends inEngineeringandTechnology(ICETET),Nagpur, India,16â18December2009;pp.929â933.
99
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik