Page - 106 - in Document Image Processing
Image of the Page - 106 -
Text of the Page - 106 -
J. Imaging 2018,4, 43
carvingmethod is evaluated for the text line segmentation task, compared to a recent text line
segmentationmethodforpalmleafmanuscripts [27]. For the isolatedcharacter/glyphrecognition
task, theevaluation is reportedfromthehandcraftedfeatureextractionmethod, theneuralnetwork
withunsupervised learningfeature to theCNNbasedmethod. Finally, theRNN-LSTMbasedmethod
isusedtoanalyze thewordrecognitionandtransliterationtask forpalmleafmanuscripts.
3.1. Binarization
Binarization iswidelyappliedas thefirstpre-processingstep in imagedocumentanalysis [34].
Binarization isacommonstartingpoint fordocument imageanalysisandconvertsgray imagevalues
intobinary representation forbackgroundandforeground,or,more specifically, text andnon-text,
which is thenfedinto furtherdocumentprocessingtaskssuchas text linesegmentationandoptical
character recognition. Theperformanceofbinarization techniqueshasagreat impact anddirectly
affects the performance of the recognition task [35]. Non-optimal binarizationmethods produce
unrecognizable characterswithnoise [16]. Manybinarizationmethodshavebeen reported. These
methodshavebeen testedandevaluatedondifferent typesofdocument collections. Basedon the
choice of the thresholding value, binarizationmethods can generally be divided into two types,
globalbinarizationand local adaptivebinarization [16]. Somesurveysandcomparative studiesof
theperformanceofseveralbinarizationmethodshavebeenreported[35,36].Abinarizationmethod
thatperformswell foronedocumentcollectionmaynotnecessarilybeappliedtoanotherdocument
collectionwith the same performance [34]. For this reason, there is always a need to perform a
comprehensiveevaluationof theexistingbinarizationmethods foranewdocumentcollection thathas
differentcharacteristics, forexample thehistoricalarchivedocuments [36].
In thiswork,wecomparedseveralalternativebinarizationalgorithmsforpalmleafmanuscripts.
We testedandevaluatedsomewell-knownstandardbinarizationmethods, andsomebinarization
methodsthatareexperimentallypromisingforhistoricalarchivedocuments, thoughnotspecificallyfor
imagesofpalmleafmanuscripts.Wealso testedthebinarizationmethodsfromtheDocument Image
BinarizationCompetition (DIBCO)competition [37,38], forexampleHowe’smethod[39]andtheones
from the InternationalConferenceonFrontiers inHandwritingRecognition (ICFHR) competition
(amadi.univ-lr.fr/ICFHR2016_Contest) [25,40].
3.1.1.GlobalThresholding
Global thresholding is the simplest technique and the most conventional approach for
binarization[34,41].Asinglethresholdvaluewascalculatedfromtheglobalcharacteristicsoftheimage.
Thisvalueshouldbeproperlychosenbasedonaheuristic techniqueorastatisticalmeasurement to
beable togivepromisingoptimalbinarization results [36]. It iswidelyknownthatusingaglobal
thresholdtoprocessabatchofarchive imageswithdifferent illuminationandnoisevariation isnota
properchoice. Thevariationbetween images in the foregroundandbackgroundcolorson low-quality
document imagesgivesunsatisfactoryresults. It isdifficult tochooseonefixedthresholdvalue that is
adaptable forall images [36,42].
Otsu’smethod is a very popular global binarization technique [34,41]. Conceptually, Otsu’s
methodtries tofindanoptimumglobal thresholdonanimagebyminimizingtheweightedsumof
variancesof theobjects andbackgroundpixels [34]. Otsu’smethod is implementedas a standard
binarizationtechniqueinabuilt-inMatlabfunctioncalledgraythresh (https://fr.mathworks.com/help/
images/ref/graythresh.html) [43].
3.1.2. LocalAdaptiveBinarization
To overcome the weakness of the global binarization technique, many local adaptive
binarization techniqueswere proposed, for exampleNiblack’smethod [34,36,41,42,44], Sauvola’s
method [34,36,41,42,44,45],Wolf’smethod [42,44,46],NICKmethod [44], and theRaismethod [34].
The thresholdvalue in localadaptivebinarizationtechnique iscalculated ineachsmaller local image
106
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik