Page - 108 - in Document Image Processing
Image of the Page - 108 -
Text of the Page - 108 -
J. Imaging 2018,4, 43
3.2.1. SeamCarvingMethod
ArvanitopoulosandSüsstrunk[47]proposedabinarization-freemethodbasedonatwo-stage
process:medial seamandseparatingseamcomputation. Theapproachcomputesmedial seamsby
splittingthe inputpage image intocolumnswhosesmoothedprojectionprofilesare thencalculated.
Thepositionsof themedial seamsareobtainedbasedonthe localmaxima locationsof theprofiles.
Thegoalof thesecondstageof theapproach is tocomputeseparatingseamswith theapplicationon
theenergymapwithin thearearestrictedbythemedial seamsof twoneighboring lines foundinthe
previousstage. The techniquecarvespaths that traverse the imagefromleft to right, accumulating
energy. Thepathwith theminimumcumulativeenergy is thenchosen.
3.2.2.AdaptivePathFindingMethod
ThisapproachwasproposedbyValyet al. [27]. Themethod takesas inputagrayscale image
of adocumentpage. Connected components are extracted from the input imageusing the stroke
width informationbyapplyingthestrokewidth transform(SWT)ontheCannyedgemap. Thesetof
extractedcomponents (filteredtoremovecomponents thatcomefromnoiseandartifacts) isusedto
createastrokemap.Usingcolumn-wiseprojectionprofilesontheoutputmap,estimatednumberand
medialpositionsof text linecanbedefined. Toadaptbetter toskewandfluctuation,anunsupervised
learningcalledcompetitive learning isappliedonthesetofconnectedcomponents foundpreviously.
Finally,apathfindingtechnique isapplied inorder tocreateseambordersbetweenadjacent linesby
usingacombinationof twocost functions: onepenalizingthepath thatgoes throughthe foreground
text (intensitydifferencecost functionD) andanotherone favoring thepath that stays close to the
estimatedmedial lines (vertical distance cost functionV). Figure 4 illustrates an example of an
optimalpath.
Figure4.Anexampleofanoptimalpathgoingfromstart stateS1 togoal stateSn.
3.3. IsolatedCharacter/GlyphRecognition
In aDIA system,word or text recognition tasks are generally categorized into twodifferent
approaches: segmentation-basedandsegmentation-freemethods. Insegmentation-basedmethods,
the isolatedcharacter recognition task isavery importantprocess [9].Aproper featureextractionand
acorrectclassifierselectioncan increase therecognitionrate [48].Althoughmanymethodsfor isolated
characterrecognitionhavebeendevelopedandtested,especially forLatin-basedscriptsandalphabets,
there is still aneedfor in-depthevaluationof thosemethodsasappliedtovariousotherscripts. This
includes the isolatedcharacterrecognitiontaskformanySoutheastAsianscripts,andmorespecifically
scripts thatwerewrittenonancientpalmleafmanuscripts.
Previousstudiesonisolatedcharacter recognition inpalmleafmanuscriptshavealreadybeen
reported, butonlywith theBalinese script as thebenchmarkdataset [28,29]. In thatfirstwork, an
experimental studyon feature extractionmethods for character recognitionofBalinese scriptwas
performed[28]. For thesecondwork,a training-basedmethodwithneuralnetworkandunsupervised
108
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik