Page - 112 - in Document Image Processing
Image of the Page - 112 -
Text of the Page - 112 -
J. Imaging 2018,4, 43
architecturewith two-directional (forward andbackward) context processing. LSTMarchitecture
iswidely evaluatedas ageneric and language-independent text recognizer [55]. In thiswork, the
OCRopy(https://github.com/tmbdev/ocropy) [56] framework isusedto testandevaluate theword
recognitionandtransliteration tasks for thepalmleafmanuscriptcollection.OCRopyprovides the
functional library of theOCRsystembyusingRNN-LSTMarchitecture (http://graal.hypotheses.
org/786) [57,58].Weevaluated thedatasetwithunidirectionalLSTMandthe (BidirectionalLTSM)
BLSTMarchitecture.
4. Experiments:DatasetsandEvaluationMethods
Fromthe threemanuscriptcorpuses (Khmer,Balinese,andSundanese), thedatasets foreachDIA
taskwereextractedandusedin theexperimentalworkfor this research.
4.1. Binarization
4.1.1.Datasets
Thepalm leafmanuscript datasets for binarization task arepresented inTable 1. ForKhmer
manuscripts, one ground truth binarized image is provided for each image, but for Balinese and
Sundanesemanuscripts,eachimagehastwodifferentgroundtruthbinarizedimages[17,25]. Thestudy
ofgroundtruthvariabilityandsubjectivitywasreported in thepreviouswork[24]. In this research,
we only used the first binarized ground truth image for evaluation. The binarized ground truth
images forKhmermanuscriptsweregeneratedmanuallywith thehelpofphoto editing software
(Figure11).Apressure-sensitive tipstylus isusedto traceeach text strokebykeepingtheoriginal size
of thestrokewidth[59]. For themanuscripts fromBali, thebinarizedgroundtruth imageshavebeen
createdwithasemi-automaticscheme[17,23–25] (Figure12). Thebinarizedgroundtruth images for
Sundanesemanuscriptsweremanually [22]generatedusingPixLabeler [60] (Figure13). The training
set isprovidedonlyfor theBalinesedataset.Weusedall imagesof theKhmerandSundanesecorpuses
asa test setbecause the training-basedbinarizationmethod(ICFHRG1method,seeSection5.1)was
evaluatedfor theKhmerandSundanesedatasetsbyusingonly thepre-trainedBalinese trainingset
weightedmodel.
Table1.Palmleafmanuscriptdatasets forbinarizationtask.
Manuscripts Train Test GroundTruth Dataset
Balinese 50pages 50pages 2×100pages ExtractedfromAMADI_LontarSet [17,25,40]
Khmer - 46pages 1×46pages ExtractedfromEFEO[20,59]
Sundanese - 61pages 2×61pages ExtractedfromSundaDataset ICDAR2017[22]
Figure11.Khmermanuscriptwithbinarizedgroundtruth image.
112
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik