Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 112 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 112 - in Document Image Processing

Image of the Page - 112 -

Image of the Page - 112 - in Document Image Processing

Text of the Page - 112 -

J. Imaging 2018,4, 43 architecturewith two-directional (forward andbackward) context processing. LSTMarchitecture iswidely evaluatedas ageneric and language-independent text recognizer [55]. In thiswork, the OCRopy(https://github.com/tmbdev/ocropy) [56] framework isusedto testandevaluate theword recognitionandtransliteration tasks for thepalmleafmanuscriptcollection.OCRopyprovides the functional library of theOCRsystembyusingRNN-LSTMarchitecture (http://graal.hypotheses. org/786) [57,58].Weevaluated thedatasetwithunidirectionalLSTMandthe (BidirectionalLTSM) BLSTMarchitecture. 4. Experiments:DatasetsandEvaluationMethods Fromthe threemanuscriptcorpuses (Khmer,Balinese,andSundanese), thedatasets foreachDIA taskwereextractedandusedin theexperimentalworkfor this research. 4.1. Binarization 4.1.1.Datasets Thepalm leafmanuscript datasets for binarization task arepresented inTable 1. ForKhmer manuscripts, one ground truth binarized image is provided for each image, but for Balinese and Sundanesemanuscripts,eachimagehastwodifferentgroundtruthbinarizedimages[17,25]. Thestudy ofgroundtruthvariabilityandsubjectivitywasreported in thepreviouswork[24]. In this research, we only used the first binarized ground truth image for evaluation. The binarized ground truth images forKhmermanuscriptsweregeneratedmanuallywith thehelpofphoto editing software (Figure11).Apressure-sensitive tipstylus isusedto traceeach text strokebykeepingtheoriginal size of thestrokewidth[59]. For themanuscripts fromBali, thebinarizedgroundtruth imageshavebeen createdwithasemi-automaticscheme[17,23–25] (Figure12). Thebinarizedgroundtruth images for Sundanesemanuscriptsweremanually [22]generatedusingPixLabeler [60] (Figure13). The training set isprovidedonlyfor theBalinesedataset.Weusedall imagesof theKhmerandSundanesecorpuses asa test setbecause the training-basedbinarizationmethod(ICFHRG1method,seeSection5.1)was evaluatedfor theKhmerandSundanesedatasetsbyusingonly thepre-trainedBalinese trainingset weightedmodel. Table1.Palmleafmanuscriptdatasets forbinarizationtask. Manuscripts Train Test GroundTruth Dataset Balinese 50pages 50pages 2×100pages ExtractedfromAMADI_LontarSet [17,25,40] Khmer - 46pages 1×46pages ExtractedfromEFEO[20,59] Sundanese - 61pages 2×61pages ExtractedfromSundaDataset ICDAR2017[22] Figure11.Khmermanuscriptwithbinarizedgroundtruth image. 112
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing