Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Document Image Processing
Page - 114 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 114 - in Document Image Processing

Image of the Page - 114 -

Image of the Page - 114 - in Document Image Processing

Text of the Page - 114 -

J. Imaging 2018,4, 43 Negative RateMetric (NRM): NRM is defined from the negative rate of false negative (NRFN) (Equation(6))andthenegativerateof falsepositive (NRFP) (Equation(7)): NRFN= FN FN+TP (6) NRFP= FP FP+TN (7) TN, defined as true negative, occurswhen both the image pixel and ground truth are labeled as background. ThedefinitionsofTP,FN, andFPare thesameas theonesgivenfor theF-Measure. NRM= NRFN+NRFP 2 (8) AlowerNRMindicatesabettermatch. 4.2. TextLineSegmentation 4.2.1.Datasets Thepalmleafmanuscriptdatasetsfortext linesegmentationtaskarepresentedinTable2. Thetext linesegmentationgroundtruthdata forBalineseandSundanesemanuscriptshavebeengenerated byhandbasedon thebinarizedground truth images [17]. ForKhmer1, a semi-automatic scheme isused [26,59]. A set ofmedialpoints for each text is generatedautomaticallyon thebinarization groundtruthof thepage image. Then thosepoints canbemovedupordownwitha tool tofit the skewandfluctuationof thereal text lines.Wealsonote touchingcomponentsspreadingovermultiple linesandthe locationswhere theycanbeseparated. ForKhmer2and3,anIDof the line itbelongs to isassociatedwitheachannotatedcharacter. Theregionofa text line is theunionof theareasof the polygonboundariesofall annotatedcharacterscomposing it [21,27]. Table2.Palmleafmanuscriptdatasets for text linesegmentationtask. Manuscripts Pages TextLines Dataset Balinese1 35pages 140 text lines ExtractedfromAMADI_LontarSet [17,26,40] Balinese2 Bali-2.1: 47pagesBali-2.2: 49pages 181 text lines 182 text lines ExtractedfromAMADI_LontarSet [17] Khmer1 43pages 191 text lines ExtractedfromEFEO[20,26,59] Khmer2 100pages 476 text lines ExtractedfromSleukRithSet [21,27] Khmer3 200pages 971 text lines ExtractedfromSleukRithSet [21] Sundanese1 12pages 46 text lines ExtractedfromSundaDataset [26] Sundanese2 61pages 242 text lines ExtractedfromSundaDataset [22] 4.2.2. EvaluationMethod Followingourpreviouswork[26],weusetheevaluationcriteriaandtoolprovidedbyICDAR2013 HandwritingSegmentationContest [61]. First, theone-to-one (o2o)matchscore is computed fora regionpairbasedontheevaluator’sacceptance threshold. Inourexperiments,weused90%as the acceptance threshold. LetNbethecountofgroundtruthelements, andMthecountof resultelements. Withtheo2oscore, threemetricsarecalculated: detectionrate (DR), recognitionaccuracy(RA),and performancemetric (FM). 4.3. IsolatedCharacter/GlyphRecognition 4.3.1.Datasets Thepalmleafmanuscriptdatasets for isolatedcharacter/glyphrecognitiontaskarepresented inTable3. For theBalinesecharacterdataset,Balinesephilologistsmanuallyannotatedthesegment 114
back to the  book Document Image Processing"
Document Image Processing
Title
Document Image Processing
Authors
Ergina Kavallieratou
Laurence Likforman-Sulem
Editor
MDPI
Location
Basel
Date
2018
Language
German
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-106-1
Size
17.0 x 24.4 cm
Pages
216
Keywords
document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Document Image Processing