Page - 120 - in Document Image Processing
Image of the Page - 120 -
Text of the Page - 120 -
J. Imaging 2018,4, 43
Figure22.BinarizationofBalinesemanuscriptwith ICFHRG2method.
5.2. TextLineSegmentation
Theexperimental results for text linesegmentationtaskarepresentedinTable6.Accordingto
theseresults,bothmethodsperformsufficientlywell formostdatasets,exceptKhmer1(Figures23–25).
This is becauseall images in this set areof lowqualitydue to the fact that theyaredigitized from
microfilms. Nevertheless, the adaptivepathfindingmethodachievesbetter results than the seam
carvingmethodon all datasets of palm leafmanuscripts in our experiment. Themaindifference
between these twoapproaches is that insteadoffindinganoptimal separatingpathwithinanarea
constrainedbymedial seamlocationsof twoadjacent lines (in theseamcarvingmethod), theadaptive
pathfinding approach tries to findapath close to an estimated straight seam line section. These
linesectionsalreadyrepresentwell theseambordersbetweentwoneighboring lines, so theycanbe
consideredabetterguide forfindinggoodpaths,henceproducingbetter results.
Onecommonerror thatweencounter forbothmethods is in themedialpositioncomputation
stage. Detecting correctmedial positions of text lines is crucial for the path-finding stage of the
methods. Inourexperiment,wenoticedthatsomeparametersplayanimportant role. For instance,
thenumberofcolumns/slices rof theseamcarvingmethodandthehighandlowthresholdingvalues
of theedgedetectionalgorithmintheadaptivepathfindingapproachare important. Inorder toselect
theseparameters,avalidationsetconsistingoffiverandompages isused. Theoptimalvaluesof the
parametersare thenempiricallyselectedbasedontheresults fromthisvalidationset.
Table6.Experimental results for text linesegmentationtask: thecountofgroundtruthelements (N),
andthecountof resultelements (M), theone-to-one(o2o)matchscore iscomputedforaregionpair
basedon90%acceptance threshold,detectionrate (DR), recognitionaccuracy(RA),andperformance
metric (FM).
Methods Manuscripts N M o2o DR(%) RA(%) FM(%)
Seamcarving[47] Balinese1 140 167 128 91.42 76.64 83.38
Bali-2.1 181 210 163 90.05 77.61 83.37
Bali-2.2 182 219 161 88.46 73.51 80.29
Khmer1 191 145 57 29.84 39.31 33.92
Khmer2 476 665 356 53.53 74.79 62.40
Khmer3 971 1046 845 87.02 80.78 83.78
Sundanese
1 46 43 36 78.26 83.72 80.89
Sundanese
2 242 257 218 90.08 84.82 87.37
AdaptivePathFinding[27] Balinese1 140 143 132 94.28 92.30 93.28
Bali-2.1 181 188 159 87.84 84.57 86.17
Bali-2.2 182 191 164 90.10 85.86 87.93
Khmer1 191 169 118 61.78 69.82 65.55
Khmer2 476 484 446 92.15 93.70 92.92
Khmer3 971 990 910 93.71 91.91 92.80
Sundanese
1 46 50 41 89.13 82.00 85.41
Sundanese
2 242 253 222 91.73 87.74 89.69
120
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik