Page - 121 - in Document Image Processing
Image of the Page - 121 -
Text of the Page - 121 -
J. Imaging 2018,4, 43
Figure23.Text linesegmentationofBalinesemanuscriptwith theSeamCarvingmethod(green)and
AdaptivePathFinding(red).
Figure24.Text linesegmentationofKhmermanuscriptwiththeSeamCarvingmethod(green)and
AdaptivePathFinding(red).
Figure25.Text linesegmentationofSundanesemanuscriptwith theSeamCarvingmethod(green)
andAdaptivePathFinding(red).
5.3. IsolatedCharacter/GlyphRecognition
Theexperimental results for isolatedcharacter/glyphrecognitiontaskarepresentedinTable7.
Forhandcraftedfeaturewithk-NN, theKhmersetwith113,206 train imagesand90,669 test images
will needaconsiderableamountof time forone-to-onek-NNcomparison, sowedonot think it is
reasonabletouseit. ForCNN1,previousworkonlyreportedresults for theBalineseset. Forall ICFHR
competitionmethods, thecompetitionwasproposedonly for theBalineseset, soweonlyhave the
reported results for theBalinese set. According to these results, thehandcrafted featureextraction
combinationofHoG-NPW-Kirsch-Zoning isaproperchoiceresulting inagoodrecognitionrate for
BalineseandKhmer characters/glyphs. TheCNNmethodsalso showsatisfactory results, but the
differences inrecognitionratesarenot toosignificantwith thehandcraftedfeaturecombinations. The
unbalancednumberof imagesamplesforeachcharacterclassmeanstheCNNmethoddidnotperform
optimally. For theSundanesedataset, thehandcrafted featurewithNNslightlyoutperformed the
CNNmethod. TheUFLmethodslightly increasedtherecognitionrateof thepureNNmethodfor the
KhmerandBalinesedatasets.
Table7.Experimental results for isolatedcharacter/glyphrecognitiontasks (in%recognitionrate).
Methods Balinese Khmer Sundanese
HandcraftedFeature (HoG-NPW-Kirsch-Zoning)withk-NN[28] 85.16 - 72.91
HandcraftedFeature (HoG-NPW-Kirsch-Zoning)withNN[29] 85.51 92.15 79.69
HandcraftedFeature (HoG-NPW-Kirsch-Zoning)withUFL+NN[29] 85.63 92.44 79.33
CNN1[28] 84.31 - -
CNN2 85.39 93.96 79.05
ICFHRG1:VCMF[25] 87.44 - -
ICFHRG1:VMQDF[25] 88.39 - -
ICFHRG3[25] 77.83 - -
ICFHRG5[25] 77.70 - -
5.4.WordRecognitionandTransliteration
Theexperimental results forwordrecognitionandtransliterationtaskarepresented inTable8.
Theerrorrates forwordrecognitionandtransliterationtestssetoneachtrainingmodel iterationare
showninFigures26–28. TheLSTM-basedarchitectureofOCRopyseemsverypromising in termsof
121
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik