Page - 122 - in Document Image Processing
Image of the Page - 122 -
Text of the Page - 122 -
J. Imaging 2018,4, 43
recognizinganddirectly transliteratingBalinesewords. For theKhmerandSundanesedatasets, the
LSTMarchitectureseemstostruggle to learn the trainingdata.Moresyntheticdata trainingwitha
more frequentwordshouldbegenerated inorder tosupport the trainingprocess. For theBalinese
dataset, asequencedepthof100pixelswithaneuronsizeof200givesabetter result forbothLSTM
andBLTSMarchitecture.Mostof theSoutheastAsianscriptsaresyllabic scripts.Onecharacter/glyph
in these scripts represents a syllable,with a sequence of letters inLatin script. In this case,word
transliteration isnot justwordrecognitionwithone-to-oneglyph-to-letterassociation. Thismakes
wordtransliterationmorechallengingthancharacter/glyphrecognition.
Table8.Experimental results forwordrecognitionandtransliterationtasks (in%errorrate for test).
Methods(withOCRopy[56]Framework) Balinese Khmer Sundanese
BLSTM1(seq_depth60,neuronsize100) 43.13 Latin text:
73.76Khmer
text: 77.88 75.52
LSTM1(seq_depth100,neuronsize100) 42.88 - -
BLSTM2(seq_depth100,neuronsize200) 40.54 - -
LSTM2(seq_depth100,neuronsize200) 39.70 - -
Figure26.Errorrate forBalinesewordrecognitionandtransliterationtest set.
Figure27.Errorrate forKhmerwordrecognitionandtransliterationtest set.
122
back to the
book Document Image Processing"
Document Image Processing
- Title
- Document Image Processing
- Authors
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Editor
- MDPI
- Location
- Basel
- Date
- 2018
- Language
- German
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Size
- 17.0 x 24.4 cm
- Pages
- 216
- Keywords
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Category
- Informatik